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1 Introduction 

1.1 Ambdahl’s Law 
In a program that is run in parallel on   computational units, and where fraction   of the overall execu-

tion can exploit parallelism, the speedup (compared to a sequential execution) is 

        
 

(   )   
 

 

1.2 Basic Notions 

1.2.1 Multiprocessing 

- Multiprocessing is the use of more than one processing unit in a system. 

- Execution of processes is said to be parallel, as they are running at the same time. 

 

1.2.2 Multitasking 

- Even on systems with a single processing unit, it appears as if programs run in parallel. 

- This is achieved by the operating system through multitasking: it switches between the execu-

tion of different tasks. 

- Execution of processes is said to be interleaved, as all are in progress, but only one at a time is 

running. 

 

1.2.3 Definitions 

- A (sequential) program is a set of instructions. 

- Structure of a typical process 

o Process identifier: unique ID of a process. 

o Process state: current activity of a process. 

o Process context: program counter, register values. 

o Memory: program text, global data, stack and heap. 

- Concurrency: Both multiprocessing and multitasking are examples of a concurrent computation. 

- A system program called the scheduler controls which processes are running; it sets the process 

states: 



o new: being created. 

o running: instructions are being executed. 

o ready: ready to be executed, but not assigned a processor yet. 

o terminated: finished executing. 

 
o A program can get into the state blocked by executing special program instructions (so-

called synchronization primitives). 

o When blocked, a process cannot be select-

ed for execution. 

o A process gets unblocked by external 

events which set its state to ready again. 

- The swapping of processes on a processing unit by 

the scheduler is called a context switch. 

o Scheduler actions when switching processes P1 and P2: 

 
- Programs can be made concurrent by associating them 

with threads (which is part of an operating system process) 

o Components private to each thread 

 Thread identifier 

 Thread state  

 Thread context 

 Memory: only stack 

o Components shared with other threads 

 Program text 

 Global data 

 Heap 

1.2.4 The Interleaving Semantics 

- A program which at runtime gives rise to a process containing multiple threads is called a paral-

lel program. 

- We use an abstract notation for concurrent programs: 

P1.state := ready 

// save register values as P1’s context in memory 

// use context of P2 to set register values 

P2.state := running 

 



 
- Executions give rise to execution sequences. For instance 

 
- An instruction is atomic if its execution cannot be interleaved with other instructions before its 

completion. There are several choices for the level of atomicity, and by convention every num-

bered line in our programs can be executed atomically. 

- To describe the concurrent behaviour, we need a model: 

o True-concurrency semantics: assumption that true parallel behaviours exist. 

o Interleaving semantics: assumption that all parallel behaviour can be represented by the 

set of all non-deterministic interleavings of atomic instructions. This is a good model for 

concurrent programs, in particular it can describe: 

 Multitasking: the interleaving is performed by the scheduler. 

 Multiprocessing: the interleaving is performed by the hardware. 

o By considering all possible interleavings, we can ensure that a program runs correctly in 

all possible scenarios. However, the number of possible interleavings grows exponential-

ly with the number of concurrent processes. This is the so-called state space explosion. 

1.3 Transition Systems and LTL 
- A formal model that allows us to express concurrent computation are transition systems, which 

consist of states and transitions between them. 

o A state is labelled with atomic propositions, which express concepts such as 

      (the program pointer of    points to 2 

     (the value of variable   is 6) 

o There is a transition between two states if one state can be reached from the other by 

execution an atomic instruction. For instance: 



 

 
- More formally, we define transition systems as follows: 

o Let   be a set of atomic propositions. Then, a transition system   is a triple (     ) 

where 

   is the set of states, 

       is the transition relation, and 

      ( ) is the labelling function. 

o The transition relation has the additional property that for every     there is an      

such that     . 

o A path is an infinite sequence of states:              

o We write  , - for the (infinite) subsequence                

- For any concurrent program, its transition system represents all of its behaviour. However, we 

are typically interested in specific aspects of this behaviour, e.g., 

o “the value of variable   will never be negative” 

o “the program pointer of    will eventually point to 9” 

- Temporal logics allow us to express such properties formally, and we will study linear-time tem-

poral logic (LTL). 

1.3.1 Syntax and Semantics of Linear-Time Temporal Logic 

- Syntax of LTL is given by the following grammar: 

     |   |    |      |     |     |       |     

- The following temporal operators exist: 

o    : Globally (in all future states)   holds 

o    : In some future state   holds 

o        : In some future state    holds, and at least until then,    holds. 

- The meaning of formulae is defined by the satisfaction relation   for a path              



o     

o     iff    (  ) 

o      iff     does not hold 

o         iff      and      

o       iff for all    ,  , -    

o       iff there exists    , s.t.  , -    

o           iff exists    , s.t.  , -     and for all      ,  , -     

o       iff  , -    

- For simplicity, we also write     when we mean that for every path   starting in   we have 

   . 

- We say two formulae   and   are equivalent, if for all transistion systems and all paths   we 

have 

                        

o For instance, we have 

           

           

1.3.2 Safety and Liveness Properties 

- There are two types of formal properties in asynchronous computations: 

o Safety properties are properties of the form “something bad never happens”. 

o Liveness properties are properties of the form “something good eventually happens”. 

1.4 Concurrency Challenges 
- The situation that the result of a concurrent execution is dependent on the non-deterministic in-

terleaving is called a race condition or data race. Such problems can stay hidden for a long time 

and are difficult to find by testing. 

- In order to solve the problem of data races, processes have to synchronize with each other. Syn-

chronization describes the idea that processes communicate with each other in order to agree 

on a sequence of actions. 

- There are two main means of process communication: 

o Shared memory: processes communicate by reading and writing to shared sections of 

memory. 

o Message-passing: processes communicate by sending messages to each other. 

- The predominant technique is shared memory communication. 

- The ability to hold resources exclusively is central to providing process synchronization for re-

source access. However, this brings other problems: 

o A deadlock is the situation where a group of processes blocks forever because each of 

the processes is waiting for resources which are held by another process in the group. 

- There are a number of necessary conditions for a deadlock to occur (Coffman conditions): 

o Mutual exclusion: processes have exclusive control of the resources they require. 

o Hold and wait: processes already holding resources may request new resources. 

o No pre-emption: resources cannot be forcibly removed from a process holding it. 



o Circular-wait: two or more processes form a circular chain where each process waits for 

a resource that the next process in the chain holds. 

- The situation that processes are perpetually denied access to resources is called starvation. 

Starvation-free solutions often require some form of fairness: 

o Weak fairness: if an action is continuously enables, i.e. never temporarily disabled, then 

it has to be executed infinitely often. 

o Strong fairness: if an activity is infinitely often enables, but not necessarily always, then 

it has to be executed infinitely often. 

  



2 Synchronization Algorithms 

2.1 The mutual exclusion problem 
- Race conditions can corrupt the result of a concurrent computation if processes are not properly 

synchronized. Mutual exclusion is a form of synchronization to avoid simultaneous use of a 

shared resource. 

- We call the part of a program that accesses a shared resource a critical section. 

- The mutual exclusion problem can then be described as   processes of the following form: 

 
- The entry and exit protocols should be designed to ensure 

o Mutual exclusion: At any time, at most one process may be in its critical section. 

o Freedom of deadlock: If two or more processes are trying to enter their critical sections, 

one of them will eventually succeed. 

o Freedom from starvation: If a process is trying to enter its critical section, it will eventu-

ally succeed. 

- Further important conditions: 

o Processes can communicate with each other only via atomic read and write operations. 

o If a process enters its critical section, it will eventually exit from it. 

o A process may loop forever, or terminate while being in its non-critical section. 

o The memory locations accessed by the protocols may not be accessed outside of them. 

2.2 Peterson’s Algorithm 

 

- Peterson’s algorithm satisfies mutual exclusion and is starvation-free. It can also be rather easily 

generalized to   processes. 

while true loop 

  entry protocol 

  critical section 

  exit protocol 

  non-critical section 

end 

 



 

- In this generalization, every process has to go though     stages to reach the critical section; 

variable   indicates the stage. 

o enter[i]: stage the process    is currently in. 

o turn[j]: which process entered stage   last. 

o Waiting:    waits if there are still processes at higher 

stages, or if there are processes at the same stage, un-

less    is no longer the last process to have entered 

this stage. 

o Idea for mutual exclusion proof: At most     pro-

cesses can have passed stage  .  

2.3 The Bakery Algorithm 
- Freedom of starvation still allows that processes may enter their critical sections before a cer-

tain, already waiting process is allowed access. We study an algorithm that has very strong fair-

ness guarantees. 

- More fairness notions: 

o Bounded waiting: If a process is trying to enter its critical section, then there is a bound 

on the number of times any other process can enter its critical section before the given 

process does so. 

o r-bounded waiting: If a process is trying to enter its critical section, then it will be able to 

enter before any other process is able to enter its critical section     times. 

o First-come-first-served: 0-bounded waiting. 

- Relations between the definitions 

o Starvation-freedom implies deadlock-freedom. 

o Starvation-freedom does not imply bounded waiting. 

o Bounded waiting does not imply starvation-freedom. 

o Bounded waiting and deadlock-freedom imply starvation-freedom. 



 
- The bakery algorithm is first-come-first-served. However, one drawback is that the values of 

tickets can grow unboundedly. 

2.4 Space Bounds for Synchronization Algorithms 
- A solution for the mutual exclusion problem for   processes that satisfies global progress needs 

to use   shared one-bit registers. This bound is tight, as Lamport’s one-bit algorithm shows. 

  



3 Semaphores 
- In Chapter 2 we have seen how synchronization algorithms can be implemented using only 

atomic read and write. However, these algorithms have several drawbacks: 

o They rely on busy waiting which is very inefficient for multitasking. 

o Their synchronization variables are freely accessible within the program (no encapsula-

tion). 

o They can become very complex and difficult to implement. 

- We introduce semaphores, a higher-level synchronization primitive that alleviates some of the 

problems of synchronization algorithms. They are a very important primitive, widely imple-

mented and with many uses. 

- They have been invented by E.W. Dijkstra in 1965 and rely on stronger atomic operations than 

only atomic read/write. 

3.1 General and Binary Semaphores 
- A general semaphore is an object that consists of a variable count and two operations up and 

down. Such a semaphore is sometimes also called counting semaphore. 

o If a process calls down where count>0, then count is decremented; otherwise the 

process waits until count is positive. 

o If a process calls up, then count is incremented. 

- For the implementation we require testing and decrementing, as well as incrementing to be 

atomic. 

- A simple implementation based on busy-waiting looks as follows: 

 
- Providing mutual exclusion with semaphores is easy: we can initialize s.count to 1, and en-

close the critical section as follows 

 

class SEMAPHORE 

  feature 

  count: INTEGER 

  down 

    do 

      await count > 0 

      count := count − 1 

    end 

  up 

    do 

      count := count + 1 

    end 

end 

 

 s.down 

 // critical section 

 s.up 

 



- We can also implement a binary semaphore, whose value is either 0 or 1. It is possible to im-

plement this using a Boolean variable. 

3.2 Efficient Implementation 
- To avoid busy-waiting, we use a solution where processes block themselves when having to wait, 

thus freeing processing resources as early as possible. 

 
- In order to avoid starvation, blocked processes are kept in a collection blocked with the fol-

lowing operations: 

o add(P) inserts a process P into the collection. 

o remove selects and removes an item from the collection, and returns it. 

o is_empty determines whether the collection is empty. 

- A semaphore where blocked is implemented as a set is called a weak semaphore. When im-

plemented as a queue, we call the semaphore a strong semaphore. This gives us a first-come-

first-served solution for the mutual exclusion problem of   processes. 

- An implementation could look as follows: 

 

count: INTEGER 

blocked: CONTAINER 

down 

  do 

    if count > 0 then 

      count := count − 1 

    else 

      blocked.add(P) −− P is the current process 

      P.state := blocked −− block process P 

    end 

  end 

up 

  do 

    if blocked.is_empty then 

      count := count + 1 

    else 

      Q := blocked.remove -- select some process Q 

      Q.state := ready −− unblock process Q 

    end 

  end 



3.3 General Remarks 

3.3.1 The Semaphore Invariant 

- When we make the following assumption, we can express a semaphore invariant: 

o k≥0: the initial value of the semaphore. 

o count: the current value of the semaphore. 

o #down: number of completed down operations. 

o #up: number of completed up operations. 

- The semaphore invariant consists of two parts: 

          

                        

3.3.2 Ensuring Atomicity of the Semaphore Operations 

- To ensure the atomicity of the sempaphore operations, one has typically built them in software, 

as the hardware does not provide up and down directly. However, this is possible using test-

and-set. 

3.3.3 Semaphores in Java 

- Java Threads offers semaphores as part of the java.util.concurrent.Semaphore 

package. 

o Semaphore(int k) gives a weak semaphore, and 

o Semaphore(int k, bool b) gives a strong semaphore if b is set to true. 

- The operations have slightly different names: 

o acquire() corresponds to down (and might throw an InterruptedException). 

o release() corresponds to up. 

3.4 Uses of Semaphores 

3.4.1 The  -Exclusion Problem 

- In the  -exlucsion problem, we allow up to   processes to be in their critical sections at the 

same time. A solution can be achieved very easily using a general semaphore, where the value 

of the semaphore intuitively corresponds to the number of processes still allowed to proceed in-

to a critical section. 

 

3.4.2 Barriers 

- A barrier is a form of synchronization that determines a point in the execution of a program 

which all processes in a group have to reach before any of them may move on. 



- Barriers are important for iterative algorithms: 

o In every iteration processes work on different parts of the problem 

o Before starting a new iteration, all processes need to have finished (e.g., to combine an 

intermediate result). 

- For two processes, we can use a semaphore    to provide the barrier for    and another    for 

  . 

 

3.4.3 The Producer-Consumer Problem 

- We consider two types of looping processes: 

o A producer produces at every loop iteration a data item for consumption by a consumer. 

o A consumer consumes such a data item at every loop iteration. 

- Producers and consumer communicate via a shared buffer implementing a queue, where the 

producers append data items to the back of the queue, and consumers remove data items from 

the front. 

- The problem consists of writing code for producers and consumers such that the following con-

ditions are satisfied: 

o Every data item produced is eventually consumed. 

o The solution is deadlock-free. 

o The solution is starvation-free. 

- This abstract description of the problem is found in many variations in concrete systems, e.g., 

producers could be devices and programs such as keyboards or word processers that produce 

data items such as characters or files to print. The consumers could then be the operating sys-

tem or a printer. 

- There are two variants of the problem, one where the shared buffer is assumed to be unbound-

ed, and one where the buffer has only a bounded capacity. 

- Condition synchronization 

o In the producer-consumer problem we have to ensure that processes access the buffer 

correctly. 

 Consumers have to wait if the buffer is empty. 

 Producers have to wait if the buffer is full (in the bounded version). 

o Condition synchronization is a form of synchronization where processes are delayed un-

til a certain condition is met. 

- In the producer-consumer problem we have to use two forms of synchronization: 

o Mutual exclusion to prevent races on the buffer, and 

o condition synchronization to prevent improper access of the buffer (as described above). 



- We use several semaphores to solve the problem. 

o mutex to ensure mutual exclusion, and 

o not_empty to count the number of items in the buffer, and 

o not_full to count the remaining space in the buffer (optional). 

 
- Side remark: It is good practice to name a semaphore used for condition synchronization after 

the condition one wants to be true. For instance, we used non_empty to indicate that one 

has to wait until the buffer is not empty. 

3.4.4 Dining Philosophers 

- We can use semaphores to solve the dining philosophers’ problem for   philosophers. To ensure 

deadlock-freedom, we have to break the circular wait condition. 

  

3.4.5 Simulating General Semaphores 

- We can use two binary semaphores to implement a general (counting) semaphore. 

 



4 Monitors 
- Semaphores provide a simple yet powerful synchronization primitive: they are conceptually 

simple, efficient, and versatile. However, one can argue that semaphores provide “too much” 

flexibility: 

o We cannot determine the correct use of a semaphore from the piece of code where it 

occurs; potentially the whole program needs to be considered. 

o Forgetting or misplacing a down or up operation compromises correctness. 

o It is easy to introduce deadlocks into programs. 

- We would like an approach that supports programmers better in these respects, enabling them 

to apply synchronization in a more structured manner. 

4.1 The Monitor Type 
- Monitors are an approach to provide synchronization that is based in object-oriented principles, 

especially the notions of class and encapsulation. A monitor class fulfils the following conditions: 

o All its attributes are private. 

o Its routines execute with mutual exclusion. 

- A monitor is an object instantiation of a monitor class. Intuition: 

o Attributes correspond to shared variables, i.e., threads can only access them via the 

monitor. 

o Routine bodies correspond to critical sections, as at most one routine is active inside a 

monitor at any time. 

- To ensure that at most one routine is active inside a monitor is ensured by the monitor imple-

mentation (not burdened on the programmer). One possibility is to use semaphores to imple-

ment this; we use a strong semaphore entry that is associated as the monitor’s lock and ini-

tialized to 1. Any monitor routine must acquire the semaphore before executing its body. 

- To solve the mutual exclusion problem, we can use a monitor with   methods called criti-

cal_1 up to critical_n. Then, the processes look as follows: 

 

4.2 Condition Variables 
- To achieve condition synchronization, monitors provide condition variables. Although they can 

be compared to semaphores, their semantics is much different and deeply intertwined with the 

monitor concept. A condition variable consists of a queue blocked and three (atomic) opera-

tions: 

o wait releases the lock on the monitor, block the executing thread and appends it to 

blocked. 



o singal has no effect if blocked is empty; otherwise it unblocks a thread, but can 

have other side effects that depend on the signalling discipline used. 

o is_empty returns true if blocked is empty, and false otherwise. 

- The operations wait and signal can only be called from the body of a monitor routine. 

 

4.2.1 Signalling Disciplines 

- When a process signals on a condition variable, it still executes inside the monitor. As only one 

process may execute within a monitor at any time, an unblocked process cannot enter the mon-

itor immediately. There are two main choices for continuation: 

o The signalling process continues, and the signalled process is moved to the entry of the 

monitor (signal and continue). 

 
o The signalling process leaves the monitor, and lets the signalling process continue (sig-

nal and wait). In this case, the monitor’s lock is silently passed on. 

class CONDITION_VARIABLE 

  feature 

    blocked: QUEUE 

    wait 

      do 

        entry.up −− release the lock on the monitor 

        blocked.add(P) −− P is the current process 

        P.state := blocked −− block process P 

      end 

    signal −− behaviour depends on signalling discipline 

      deferred end 

    is_empty: BOOLEAN 

      do 

        result := blocked.is_empty 

      end 

end 

signal 

  do 

    if not blocked.is_empty then 

      Q := blocked.remove 

      entry.blocked.add(Q) 

  end 

end 



 

- Comparison of “signal and continue” (SC) with “signal and wait” (SW) 

o If a thread executes a SW signal to indicate that a certain condition is true, this condi-

tion will be true for the signalled process. 

o This is not the case for SC, where the signal is only a hint that the condition might be 

true now; other threads might enter the monitor beforehand, and make the condition 

false again. 

o In monitors with a SC signal, also an operation signal_all usually exists to wake 

all waiting processes. That is 

 
o However, signal_all is typically inefficient; for many threads the signalled condition 

might not be true any more. 

- Other signalling disciplines: 

o Urgent signal and continue: special case of SC, where a thread unblocked by a signal op-

eration is given priority over threads already waiting in the entry queue. 

o Signal and urgent wait: special case of SW, where signaller is given priority over threads 

already waiting in the entry queue. 

o To implement these disciplines, a queue urgent_entry can be introduced which has 

priority over the standard queue entry. 

- We can classify three sets of threads: 

o   as the signalling threads, 

o   as the threads that have been unblocked on the condition, and 

o   as the threads that are blocked on the entry. 

- We can express the signalling disciplines concisely as follows, where     means that the 

threads in   have priority over threads in  . 

o Signal and continue       

o Urgent signal and continue       

o Signal and wait       

o Signal and urgent wait       

signal 

  do 

    if not blocked.is_empty then 

      entry.blocked.add(P) −− P is the current process 

      Q := blocked.remove 

      Q.state := ready −− unblock process Q 

      P.state := blocked −− block process P 

  end 

end 

while not blocked.is_empty do signal end 



4.3 Summary 
- Benefits of monitors 

o Structured approach: programmer does not have to remember to follow a wait with a 

signal just to implement mutual exclusion. 

o Separation of concerns: mutual exclusion for free, and we can use condition variables to 

achieve condition synchronization. 

- Problems of monitors 

o Performance concerns: trade-off between programmer support and performance. 

o Signalling disciplines: source of confusion; SC problematic as condition can change be-

fore a waiting process enters the monitor. 

o Nested monitor calls: Consider that routine    of monitor    makes a call to routine    

of monitor   . If routine    contains a wait operation, should mutual exclusion be re-

leased for both    and   , or only   ? 

  



5 SCOOP 
- In SCOOP, a processor is the thread of control supporting sequential execution of instructions on 

one or more objects. This can be implemented as a CPU, a process or a thread. It will be mapped 

to a computational resource. 

 
- The computational model of SCOOP relies on the following fundamental rule: 

 
- A call is “targeted” to an object in the sense of object-oriented programming; the call x.r ap-

plies the routine r to the target object identified by x. 

- The set of objects handled by a given processor is called a region. The handler rule implies a 

one-to-one correspondence between processors and regions. 

 
- SCOOP introduces the keyword separate, which is a type modifier. If x is declared sepa-

rate T for some type T, then the associated object might be handled by a different processor. 

Note: it is not required that the object resides on a different processor. 

o For instance, if a processor   executes a call x.r, and x is handled by processor   (ra-

ther than   itself) will execute r. We call such a call separate call. 

5.1 The Basic Principle 
- Separate calls to commands are executed asynchronously. 

o A client executing a separate call x.r(a) logs the call with the handler of x (who will 

execute it) 

o The client can proceed executing the next instruction without waiting. 

- A separate call to queries will not proceed until the result of the query has been computed. This 

is also called wait by necessity. 

- For non-separate calls, the semantics is the same as in a sequential setting; the client waits for 

the call to finish (synchronously). 

- The introduction of asynchrony highlights a difference between two notions: 

o A routine call, such as x.r executed by a certain processor  . 

Handler rule: All calls targeted to a given object are performed by a single proces-

sor, called the object’s handler. 



o A routine application, which – following a call – is the execution of the routine r by a 

processor  . 

- While the distinction exists in sequential programming, it is especially important in SCOOP, as 

processors   and   might be different. 

5.2 Mutual exclusion in SCOOP 
- SCOOP has a simple way to express mutually exclusive access to objects by way of message 

passing. 

o The SCOOP runtime system makes sure that the application of a call x.r(a1,a2,…) 

will wait until it has been able to lock all separate objects associated with the arguments 

a1, a2, etc. 

o Within the routine body, the access to the separate objects associated with the argu-

ments a1, a2, … is thus mutually exclusive. This allows one to very easily lock a group of 

objects. 

- Consider the dining philosophers example: 

 
- Argument passing is enforced in SCOOP to protect modifications on separate objects. The fol-

lowing rule expresses this: 

 

5.3 Condition Synchronization 
- Condition synchronization is provided in SCOOP by reinterpreting routine preconditions as wait 

conditions. 

o The execution of the body of a routine is delayed until its separate preconditions (pre-

conditions that involve a call to a separate target) are satisfied. 

Separate argument rule: The target of a separate call must be an argument of the 

enclosing routine. 



 

5.4 The SCOOP Runtime System 
- When a processor makes a separate feature call, it sends a feature request. Each processor has a 

request queue to keep track of these feature requests. 

- Before a processor can process a feature request, it must 

o Obtain the necessary locks, and 

o satisfy the precondition. 

- The processor sends a locking request to a scheduler. The scheduler keeps track of the locking 

requests and approved the requests according to a scheduling algorithm. Several possibilities, 

e.g., centralized vs. decentralized or different levels of fairness. 

- Separate callbacks are cases where a method   calls a method  , which in turn calls (back) to  . 

o This can lead to a deadlock. The solution is to interrupt processors from waiting and ask 

the other processor to execute the feature request right away. 

5.5 The SCOOP Type System 
- A traitor is an entity that statically is declared as non-separate, but during execution can become 

attached to a separate object. 

5.5.1 Consistency Rules 

 

Wait rule: A call with separate arguments waits until the corresponding objects’ 

handlers are all available, and the separate conditions are all satisfied. It reserves 

the handlers for the duration of the routine’s execution. 

Separate consistency rule (1): If the source of an attachment (assignment or argument 

passing) is separate, its target must also be separate. 

r (buf: separate BUFFER [T]; x: T) 

  local 

    buf1: separate BUFFER [T] 

    buf2: BUFFER [T] 

    x2: separate T 

  do 

    buf1 := buf -- Valid 

    buf2 := buf1 -- Invalid 

    r (buf1, x2) -- Invalid 

  end 



 

 

 

Separate consistency rule (2): If an actual argument of a separate call is of reference type, 

the corresponding formal argument must be declared as separate. 

  -- In class BUFFER [G]: 

put (element: separate G) 

 

  -- In another class: 

store (buf: separate BUFFER [T]; x: T) 

  do 

    buf.put (x) 

  end 

Separate consistency rule (3): If the source of an attachment is the result of a separate 

call to a query returning a reference type, the target must be declared as separate. 

  -- In class BUFFER [G]: 

item: G 

 

  -- In another class: 

consume (buf: separate BUFFER [T]) 

  local 

    element: separate T 

  do 

    element := buf.item 

  end 

Separate consistency rule (4): If an actual argument or result of a separate call is of an 

expanded type, its base class may not include, directly or indirectly, any non-separate at-

tribute of a reference type. 

  -- In class BUFFER [G]: 

put (element: G) 

  -- G not declared separate 

 

  -- In another class: 

store (buf: separate BUFFER [E]; x: E) 

  do 

    buf l.put (x) 

    -- E must be “fully expanded” 

  end 



- The rules 

o Prevent almost all traitors and are easy to understand. 

o Are too restrictive, don’t support agents and there is no soundness proof. 

5.5.2 The Type System of SCOOP 

- We use the following notation:     (     ), where 

o Attachable/detachable,   *   + 

o Processor tag,   *      〈 〉 〈         〉+ 

   is the current processor 

   is some processor (top) 

   is no processor (bottom) 

o Ordinary (class) type   

- Examples 

 
- We have the following subtyping rules 

o Conformance on class types are like in Eiffel, essentially based on inheritance: 

                     (     )  (     ) 

o Attached ≤ detachable: 

(     )  (     ) 

o Any processor tag ≤  : 

(     )  (     ) 

o In particular, non-separate ≤  : 

(     )  (     ) 

o   ≤ any processor tag: 

(     )  (     ) 

- Feature call rule 

o An expression exp of type (     ) is called controlled if and only if exp is attached and 

satisfies any of the following conditions: 

 exp is non-separate, i.e.,      

 exp appears in a routine r that has an attached formal argument a with the 

same handler as exp, i.e.,            . 



o A call x.f(a) appearing in the context of a routine r in class C is valid if and only if 

both: 

 x is controlled, and 

 x’s base class exports feature f to C, and the actual arguments conform in 

number and type to formal arguments of f. 

- Result type combinator: What is the type         of a query call x.f(…)? 

                   (        )  (        )  (        ) 

 
- Argument type combinator: What is the expected actual argument type in x.f(a)? 

                           (        )   (        )  (        ) 

 
- Expanded objects are always attached and non-separate, and both type combinators preserve 

expanded types. 

- False traitors can be handled by object tests. An object test succeeds if the run-time type of its 

source conforms in all of 

o detachability, 

o locality, and 

o class type to the type of its target. 

 
- Genericity 

o Entities of generic types may be separate, e.g. separate LIST[BOOK] 

o Actual generic parameters may be separate, e.g. LIST[separate BOOK] 

o All combinations are meaningful and useful. 



5.6 Lock Passing 
- If a call x.f(a1,…,an) occurs in a routine r where one or more ai are controlled, the client’s 

handler (the processor executing r) passes all currently held locks to the handler of x, and waits 

until f terminates (synchronous). 

 
- Lock passing combinations 

 

5.7 Contracts 
- Precondition 

o We have already seen that preconditions express the necessary requirement for a cor-

rect feature application, and that it is viewed as a synchronization mechanism: 

 A called feature cannot be executed unless the precondition holds. 

 A violated precondition delays the feature’s execution. 

o The guarantees given to the supplier is exactly the same as with the traditional seman-

tics. 

- A postcondition describes the result of a feature’s application. Postconditions are evaluated 

asynchronously; wait by necessity does not apply. 

o After returning from the call the client can only assume the controlled postcondition 

clauses. 

5.8 Inheritance 
- SCOOP provides full support for inheritance (including multiple inheritance). 

- Contracts 

o Preconditions may be kept or weakened (less waiting) 

o Postconditions may be kept or strengthened (more guarantees to the client) 



o Invariants may be kept or strengthened (more consistency conditions) 

- Type redeclaration 

o Result types may be redefined covariantly for functions. For attributes the result type 

may not be redefined. 

o Formal argument types may be redefined contravariantly with regard to the processor 

tag. 

o Formal argument types may be redefined contravariantly with regard to detachable tags. 

5.9 Agents 
- There are no special type rules for separate agents. Semantic rule: an agent is created on its tar-

get’s processor. 

- Benefits 

o Convenience: we can have one universal enclosing routine: 

 
o Full asynchrony: without agents, full asynchrony cannot be achieved. 

 
o Full asynchrony is possible with agents. 

 
o Waiting faster: What if we want to wait for one of two results? 



 

5.10 Once Functions 
- Separate functions are once-per-system. 

- Non-separate functions are once-per-processor. 

  



6 Review of Concurrent Languages 

6.1 Computer Architectures for Concurrency 
- We can classify computer architectures according to Flynn’s taxonomy: 

 Single Instruction Multiple Instruction 

Single Data SISD (uncommon) 

Multiple Data SIMD MIMD 

 

o SISD: no parallelism (uniprocessor) 

o SIMD vector processor, GPU 

o MIMD: multiprocessing (predominant today) 

- MIMD can be sublassified 

o SPMD (single program multiple data): All processors run the same program, but at inde-

pendent speeds; no lockstep as in SIMD. 

o MPMD (multiple program multiple data): Often manager/worker strategy: manager dis-

tributes tasks, workers return result to the manager. 

- Memory classification 

o Shared memory model 

 All processors share a common memory 

 Processes communicate by reading and 

writing shared variables (shared 

memory communication)  

o Distributed memory model 

 Every processor has its own local memory, which is inaccessible to others. 

 Processes communicate by sending messages (message-passing communication) 

 
o Client-server model 

 Describes a specific case of the distributed model 

 



6.2 Classifying Approaches to Concurrency 

 

6.3 The Actor Model in Erlang 
- Process communication through asynchronous message passing; no shared state between ac-

tors. 

- An actor is an entity which in response to a message it receives can 

o Send finitely many messages to other actors. 

o Determine new behaviour for messages it received in the future. 

o Create a finite set of new actors. 

- Recipients of messages are identified by addresses; hence an actor can only communicate with 

actors whose addresses it has. 

- A message consists of 

o the target to whom the communication is addressed, and 

o the content of the message. 

- In Erlang, processes (i.e., actors) are created using spawn, which gives them a unique process 

identifier: 

 
- Messages are sent by passing tuples to a PID with the ! syntax. 

 
- Messages are retrieved from the mailbox using the receive function with pattern matching. 

 
- Example: 

PID = spawn(module,function,arguments) 

PID ! {message} 

receive 

  message1 -> actions1; 

  message2 -> actions2; 

  … 

end 



 

6.4 Partitioned Global Address Space (PGAS) Model and X10 
- Each processor has its own local memory, but the address space is unified. This allows processes 

on other processors to access remote data via simple assignment or dereference operations. 

 
- X10 is an object-oriented language based on the PGAS model. New threads can be spawned 

asynchronously; asynchronous PGAS model 

o A memory partition and the threads operating on it are called a place. 

- X10 operations 

o async S 

 Asynchronously spawns a new child thread executing 

S and returns immediately. 

o finish S 

 Executes S and waits until all asynchronously spawned 

child threads have terminated. 

o atomic S 

 Execute S atomically. S must be non-blocking, sequential and only access local 

data. 

 
o when (E) S 



 Conditional critical section: suspends the thread until E is true, then executes S 

atomically. E must be non-blocking, sequential, only access local data, and be 

side-effect free. 

 
o at (p) S 

 Execute S at place p. This blocks the current thread until completion of S. 

 

  



7 Lock-Free Approaches 

7.1 Problems with Locks 
- Lock-based approaches in a shared memory system are error-prone, because it is easy to … 

o … forget a lock: danger of data races. 

o … take too many locks: danger of deadlock. 

o … take locks in the wrong order: danger of deadlock. 

o … take the wrong lock: the relation between the lock and the data it protects is not ex-

plicit in the program. 

- Locks cause blocking: 

o Danger of priority inversion: if a lower-priority thread is pre-empted while holding a lock, 

higher-priority threads cannot proceed. 

o Danger of convoying: other threads queue up waiting while a thread holding a lock is 

blocked. 

- Two concepts related to locks: 

o Lock overhead (increases with more locks): time for acquiring and releasing locks, and 

other resources. 

o Lock contention (decreases with more locks): the situation that multiple processes wait 

for the same lock. 

- For performance, the developer has to carefully choose the granularity of locking; both lock 

overhead and contention need to be small. 

- Locks are also problematic for designing fault-tolerant systems. If a faulty process halts while 

holding a lock, no other process can obtain the lock. 

- Locks are also not composable in general, i.e., they don’t support modular programming. 

- One alternative to locking is a pure message-passing approach: 

o Since no data is shared, there is no need for locks. 

o Of course message-passing approaches have their own drawbacks, for example 

 Potentially large overhead of messaging. 

 The need to copy data which has to be shared. 

 Potentially slower access to data, e.g., to read-only data structures which need 

to be shared. 

- If a shared-memory approach is preferred, the only alternative is to make the implementation of 

a concurrent program lock-free. 

o Lock-free programming using atomic read-modify-write primitives, such as compare and 

swap. 

o Software transactional memory (STM), a programming model based on the idea of da-

tabase transactions. 

7.2 Lock-Free Programming 
- Lock-free programming is the idea to write shared-memory concurrent programs that don’t use 

locks but can still ensure thread-safety. 



o Instead of locks, use stronger atomic operations such as compare-and-swap. These 

primitives typically have to be provided by hardware. 

o Coming up with general lock-free algorithms is hard, therefore one usually focuses on 

developing lock-free data structures like stacks or buffers. 

- For lock-free algorithms, one typically distinguishes the following two classes: 

o Lock-free: some process completes in a finite number of steps (freedom from deadlock). 

o Wait-free: all processes complete in a finite number of stops (freedom from starvation). 

- Compare-and-swap (CAS) takes three parameters; the address of a memory location, an old and 

a new value. The new value is atomically written to the memory location if the content of the 

location agrees with the old value: 

 

7.2.1 Lock-Free Stack 

- A common pattern in lock-free algorithms is to read a 

value from the current state, compute an update 

based on the value just read, and then atomically 

update the state by swapping the new for the old 

value. 

 

7.2.2 The ABA problem 

- The ABA problem can be described as follows: 

o A value is read from state A. 

o The state is changed to state B. 

o The CAS operation does not distinguish between A and B, so it assumes that it is still A. 

CAS (x, old, new) 

  do 

    if *x = old then 

      *x := new; 

      result := true 

    else 

      result := false 

    end 

  end 



- The problem is be avoided in the simple stack implementation (above) as push always puts a 

new node, and the old node’s memory location is not free yet (if the memory address would be 

reused). 

7.2.3 Hierarchy of Atomic Primitives 

- Atomic primitives can be ranked according to their consensus number. This is the maximum 

number of processes for which the primitive can implement a consensus protocol (a group of 

processes agree on a common value). 

- In a system of   or more processes, it is impossible to provide a wait-free implementation of a 

primitive with consensus number of   from a primitive with lower consensus number. 

# Primitive 

1 Read/write register 

2 Test-and-set, fetch-and-add, queue, stack, … 

… … 

2n-2 n-register assignment 

… … 

   Memory-to-memory move and swap, compare-and-swap, 
load-link/store-conditional 

 

- Another primitive is load-link/store-conditional, a pair of instructions which together implement 

an atomic read-modify-write operation. 

o Load-link returns the current value of a memory location. 

o A subsequent store-conditional to the same location will store a new value only if no 

updates have occurred to that location since the load-link. 

o The store-conditional is guaranteed to fail if no updates have occurred, even if the value 

read by the load-link has since been restored. 

7.3 Linearizability 
- Linearizability provides a correctness condition for concurrent objects. Intuition: 

- A call of an operation is split into two events: 

o Invocation: [A q.op(a1,…,an)] 

o Response: [A q:Ok(r)] 

o Notation: 

 A: thread ID 

 q: object 

 op(a1,…,an): invocation of call with arguments 

 Ok(r): successful response of call with result r 

- A history is a sequence of invocation and response events. 

o Histories can be projected on objects (written as H|q) and on threads (denoted by H|A). 

o A response matches an invocation if their object and their thread names agree. 

o A history is sequential if it starts with an invocation and each invocation, except possibly 

the last, is immediately followed by a matching response. 



o A sequential history is legal if it agrees with the sequential specification of each object. 

- A call     precedes another call     (written as         ), if    ’s response event occurs be-

fore    ’s invocation event. We write    for the precedence relation induced by  . 

o An invocation is pending if it has no matching response. 

o A history is complete if it does not have any pending invocations. 

o         ( ) is the subhistory of   with all pending invocations removed. 

- Two histories   and   are equivalent if  |   |  for all threads  . 

- A history   is linearizable if it can be extended by appending zero or more response events to a 

history   such that 

o         ( ) is equivalent to a legal sequential history  , and 

o         

- A history   is sequentially consistent if it can be extended by appending zero or more response 

events to a history   such that 

o         ( ) is equivalent to a legal sequential history  , and 

- Intuition: Calls from a particular thread appear to take place in program order. 

- Compositionality 

o Every linearizable history is also sequentially consistent. 

o Linearizability is compositional:   is linearizable if and only if for every object   the his-

tory  |  is linearizable. Sequential consistency on the other hand is not compositional. 

  



8 Calculus of Communicating Systems (CCS) 
- CCS has been introduced by Milner in 1980 with the following model in mind: 

o A concurrent system is a collection of processes. 

o A process is an independent agent that may perform internal activities in isolation or 

may interact with the environment to perform shared activities. 

- Milner’s insight: Concurrent processes have an algebraic structure. 

- This is why a process calculus is sometimes called a process algebra. 

8.1 Syntax of CCS 
- Terminal process 

o The simples possible behaviour is no behaviour, which is modelled by the terminal pro-

cess 0 (pronounced “nil”). 

o 0 is the only atomic process of CCS. 

- Names and actions 

o We assume an infinite set   of port names, and a set  ̅  *  ̅|    + of complemen-

tary port names. 

o When modelling we use a name   to denote an input action, i.e., the receiving of input 

from the associated port  . 

o We use a co-name  ̅ to denote an output action, i.e., the sending of output to the asso-

ciated port  . 

o We use   to denote the distinguished internal action. 

o The set of actions     is therefore given as        ̅  * +. 

- Action prefix 

o The simplest actual behaviour is sequential behaviour. If   is a process, we write     to 

denote the prefixing of   with an action  . 

o     models a system that is ready to perform the action  , and then behave as  , i.e., 

   
        
→    

- Process interfaces 

o The set of input and output actions that a process   may perform in isolation constitutes 

the interface of  . 

o The interface enumerates the ports that   may use to interact with the environment. 

For instance, the interface of a coffee and tea machine might be 

                          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

- Non-deterministic choice 

o A more advanced sequential behaviour is that of alternative behaviours. 

o If   and   are processes then we write     to denote the non-deterministic choice 

between   and  . This process can either behave as   (discarding  ), or as   (discard-

ing  ). 

- Process constants and recursion 

o The most advanced sequential behaviour is recursive behaviour. 



o A process may be the invocation of a process constant    . This is only meaningful if 

  is defined beforehand. 

o If   is a process constant and   a process, we write     to give a recursive definition 

of   (recursive if   involves  ). 

- Parallel composition 

o If   and   are processes, we write  |  to denote the parallel composition of   and  . 

o  |  models a process that behaves like   and   in parallel: 

 Each may proceed independently. 

 If   is ready to perform an action   and   is ready to perform the complemen-

tary action  ̅, they may interact. 

o Example: 

 
o Note that the synchronization of actions such as        ̅̅ ̅̅  is expressed by a  -action (i.e., 

regarded as an internal step. 

- Restriction 

o We control unwanted interactions with the environment by restricting the scope of port 

names. 

o If   is a process and   is a set of port names we write     for the restriction of the 

scope of each name in   to  . 

o This removes each name     and the corresponding co-name  ̅ from the interface of 

 . 

o In particular, this makes each name     and the corresponding co-name  ̅ inaccessi-

ble to the environment. 

o For instance, we can restrict the coffee-button on the coffee and tea machine, which 

means    can only teach, and never publish (i.e., in (      *      +)|   ) 

- Summary 

 
- Notation 

o We use       ∑     *   +  and   ∑       

8.2 Operational Semantics of CCS 
- We formalize the execution of a CCS process with labelled transition systems (LTS). 



- A labelled transition system (LTS) is a triple .         {
       
→  |      }/ where 

o      is a set of processes (the states), 

o     is a set of actions (the labels), and 

o for every      , 
       
→             is a binary relation on processes called the transi-

tion relation. 

o It is customary to distinguish the initial process. 

- A finite LTS can be drawn where processes are nodes, and transitions are edges. Informally, the 

semantics of an LTS are as follows: 

o Terminal process:    

o Action prefixing:     
         
→     

o Non-deterministic choice:  
         
←          

         
→     

o Recursion:         

 
o Parallel composition:    |    (two possibilities) 

        
- Formally, we can give small step operational semantics for CCS 

 

8.3 Behavioural Equivalence 
- We would like to express that two concurrent systems “behave in the same way”. We are not 

interested in syntactical equivalence, but only in the fact that the processes have the same be-

haviour. 



- The main idea is that two processes are behaviourally equivalent if and only if an external ob-

server cannot tell them apart. This is formulated by bisimulation. 

8.3.1 Strong Bisimilarity and Bisimulation 

- Let .         {
       
→  |      }/ be an LTS. 

- A binary relation             is a strong bisimulation if and only if whenever (   )   , 

then for each      : 

o If  
         
→      then  

         
→      for some    such that (     )    

o If  
         
→      then  

         
→      for some    such that (     )    

- Two processes            are strongly bisimilar (     ) if and only if there exists a strong 

bisumulation   such that (     )    

      ⋃  

                            

 

8.3.2 Weak Bisumulation 

- We would like to state that two processes      and     behave the same, where     specifies 

the computation in greater detail. Strong bisimulaitons force every action to have an equivalent 

in the other process. Therefore, we abstract from the internal actions. 

- We write  
         
⇒     if   can reach   via an  -transition, preceded and followed by zero or more  -

transitions. Furthermore,   
         
⇒     holds if    . 

o This definition allows us to “erase” sequences of  -transitions in a new definition of be-

havioural equivalence. 

- Let .         {
       
→  |      }/ be an LTS. 

- A binary relation             is a weak bisimulation if (   )    implies for each      : 

o If  
         
→      then  

         
⇒      for some    such that (     )    

o If  
         
→      then  

         
⇒      for some    such that (     )    

- Two processes            are weakly bisimilar (     ) if and only if there exists a strong bi-

sumulation   such that (     )    

8.4  -calculus 

- In CCS, all communication links are static. For instance, a server might increment a value it re-

ceives. 

- To remove this restriction, the  -calculus allows values to include channel names. A server that 

increments values can be programmed as 

   (   )  ̅〈   〉   |   

o The angle brackets are used to denote output tuples.  


