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Introduction

1.1 Requirements
We can classify requirements into four different categories

1.2

Cooperating program parts with well-defined interfaces (e.g. quality, documented interfaces,
modeling entities of the real world, communication, distribution of data and code)

Classification and specialization (e.g. extendibility, adaptability, adaptable standard functionali-
ty, modeling entities of the real world)

Highly dynamic execution model (e.g. communication, describing dynamic system behavior,
running simulations, concurrency)

Correctness (e.g. quality)

Core Concepts

Object model. A software system is a set of cooperating objects with state and processing abil-
ity, where objects exchange messages.
Classification is a general technique to hierarchically structure knowledge about concepts,
items, and their properties. The result is called classification.
Substitution principle. Objects of subtypes can be used wherever objects of supertypes are ex-
pected.
Polymorphism. A program part is polymorphic, if it can be used for objects of several types.
o Subtype polymorphism is a direct consequence of the substitution principle: Program
parts working with supertype objects work as well with subtype objects.
o Other forms of polymorphism (not core concepts)
= Parametric polymorphism (generic types)
= Ad-hoc polymorphism (method overloading)
Specialization. Adding specific properties to an object or refining a concept by adding further
characteristics.

1.3 Language Design
There are several design goals to be considered when designing a language. A good language should

resolve design trade-offs in a way suitable for its application domain.

Simplicity. Syntax and semantics can easily be understood by users of the language.
Expressiveness. Language can (easily) express complex processes and structures.

(Static) safety. Language discourages errors and allows errors to be discovered and reported,
ideally at compile time.

Modularity. Language allows modules to be compiled separately.

Performance. Programs written in the language can be executed efficiently.

Productivity. Language leads to low costs of writing programs.

Backwards compatibility. Newer language versions work and interface with programs in older
versions.



2 Subtyping

2.1 Types

2.1.1

2.1.2

2.1.3

A type system is a tractable syntactic method for proving absence of certain program behaviors
by classifying phrases according to the kinds of values they compute.

o Syntactic: Rules are based on form, not behavior.

o Phrases: Expressions, methods, etc. of a program.

o Kinds of values: Types.
A type is a set of values sharing some properties. A value v has type T if v is an element of T.

o These properties differ in different languages (e.g. nominal vs. structural type systems)

Weak and Strong Type Systems
Untyped languages (e.g. assembler)
o Do not classify values into types
Weakly-typed languages (e.g. C, C++)
o Classify values into types, but do not strictly enforce additional restrictions
Strongly-typed languages (e.g. C#, Eiffel, Java, Python, Scala)
o Enforce that all operations are applied to arguments of the appropriate types

Nominal and Structural Types

Nominal types are based on names (e.g. C++, Eiffel, Java, Scala)

Structural types are based on the availability of methods and fields (e.g. Python, Ruby or Small-
talk)

Type Checking
Static type checking
o Each expression of a program has a type
o Types of variables and methods are declared explicitly or inferred
o Types of expressions can be derived from the types of their constituents
o Type rules are used at compile time to check whether a program is correctly typed
Dynamic type checking
o Variables, methods, and expressions of a program are typically not typed
o Every object and value has a type
o The run-time system checks that operations are applied to expected arguments
A programming language is called type-safe if its design prevents type errors.
Statically type-safe object-oriented languages guarantee the following type invariant: In every
execution state, the type of the value held by a variable v is a subtype of the declared type of v.
o However, most static type systems rely on dynamic checks for certain operations, e.g.
for type conversions by casts.



Advantages of static checking Advantages of dynamic checking

- Static safety: More errors are found at compile - Expressiveness: No correct program is rejected
time by the type checker
- Readability: Types are excellent documentation - Low overhead: No need to write type annota-
- Efficiency: Type information allows optimiza- tions
tions - Simplicity: Static type systems are often compli-
cated

2.2 Subtyping

- Substitution principle: Objects of subtypes can be used wherever objects of supertypes are ex-
pected.

- Syntactic classification: Subtypes can understand at least the messages that supertype objects
can understand.

- Semantic classification: Subtype objects provide at least the behavior of supertype objects.

- We defined types as sets of values with some common property. The subtype relation then cor-
responds to the subset relation.

2.2.1 Nominal Subtyping and Substitution
- Subtype objects have a wider interface than supertype objects.
o Existence of methods and fields: Subtypes may add, but not remove methods and fields.
o Accessibility of methods and fields: An overriding method must not be less accessible
than methods it overrides.
o Types of methods and fields.
= Contravariant parameters: An overriding method must not require a more spe-
cific parameter type.
= Covariant results: An overriding method must not have a more general result
type than the methods it overrides (out-parameter and exceptions are results as
well).
= Non-variance of fields: Subtypes must not change the types of fields.
= Types of immutable fields can be specialized in subtypes (works only in the ab-
sence of inheritance, as the supertype constructor will initialize the field).
o Eiffel allows narrowing interfaces in three ways (removing methods, overriding with co-
variant parameter types and specializing field types), all possibly resulting in a run-time
exception called “catcall detected”.

2.2.2 Covariant Arrays
- Java and C# have covariant arrays, thatisif S <: T,thensS[] <: T[].
- Each array update requires a run-time type check.
- The designers resolved the trade-off between expressiveness and static safety in favor of ex-
pressiveness. Generics allow a solution that is both expressive and statically safe.




2.2.3 Shortcomings of Nominal Subtyping

1. Nominal subtyping can impede reuse: If two library classes have the same interface, but no (use-

ful) common supertype, a workaround has to be used.
o Adapter pattern: An interface is created, and an adapter keeps a private reference to its
adaptee, to which all calls are forwarded.
= Requires boilerplate code and causes memory and run-time overhead.
o Generalization
= Instead of top-down development, some languages support bottom-up devel-
opment with generalization: A supertype can be declared after the subtype has
been implemented. However, this approach does not match well with inher-
itance, and is not part of any mainstream programming language.

2. Nominal subtyping can limit generality as many method signatures are overly restrictive. For in-
stance consider a method printAl1l that expects a collection. Such a method uses only two
methods of the collection interface, but requires the type to have all 13 methods.

o Itis possible to make type requirements weaker by declaring interfaces for useful super-
types, but many useful subsets of operations usually exist.

o Java documentation makes some methods optional: Their implementation is allowed to
throw an unchecked exception. This approach clearly loses static safety.

2.2.4 Structural Subtyping and Substitution
- Structural subtypes have by definition a wider interface than their supertypes.
- Generality with structural subtyping: the example with printAll
o Static type checking: Additional supertypes approach applies as well, but the supertypes
must only be declared, the subtype relation is implicit (this helps only very little).
o Dynamic type checking: Arguments to operations are not restricted, similar to optional
methods approach (possible run-time errors).

2.2.5 Type Systems in 00-Languages
Static Dynamic

Why should one declare all the type in-

Nominal SRR L LT S IR ) formation, but then not statically check it?

Overhead of declaring many types is
Structural | inconvenient; Problems with semantics Sweetspot: Maximum flexibility
of subtypes (seen later)

2.3 Behavioral Subtyping

In the definition of type (see section 2.1), properties of values are used to characterize them. So far,
these properties have been syntactic properties, but the behavior of objects should also be included.
The behavior is expressed as interface specifications, i.e. contracts.

- Preconditions have to hold in the state before the method body is executed.
- Postconditions have to hold in the state after the method body has terminated.
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- Old-expressions can be used to refer to pre-state values from the postcondition.

- Object invariants describe consistency criteria for object and have to hold in all states, in which
an object can be accessed by other objects. That is, invariants have to hold in pre- and post-
states of method executions, but may be violated temporarily between. The pre- and post-
states are also called visible states.

- History constraints describe how objects evolve over time and relate visible states. Constraints
must be reflexive and transitive.

Static contract checking Dynamic contract checking
Program verification Run-time assertion checking
- Static safety: More errors are found at compile - Incompleteness: Not all properties can be
time checked (efficiently) at run-time
- Complexity: Static contract checking is difficult - Efficient bug-finding: complements testing
and not yet mainstream - Low overhead: Partial contracts are already use-
- Large overhead: Static contract checking re- ful
quires extensive contracts - Examples: Eiffel, IML

- Examples: Spec#, JML

2.3.1 Rules for Subtyping
- Subtype objects must fulfill contracts of supertypes, but:
o Subtypes can have stronger invariants
o Subtype can have stronger history constraints
o Overriding methods of subtypes can have weaker preconditions and stronger postcondi-
tions than the corresponding supertype methods
- This concept is called behavioral subtyping and is often implemented via specification inher-
itance.
- Static checking of behavioral subtyping
o Foreach override S.m of T.m check for all parameters, heaps, and results that
Prer , => Preg ,and Postg , => Postr.
o Foreach subtype S <: T check for all heaps that
Invg => Inveand Consg => Consy
o Problem: entailment is undecidable
- Dynamic checking of behavioral subtyping
o Checking entailment for all parameters, heaps, and results is not possible at run-time,
but we can check those properties subsequent code relies on. For each method call
o.m(..) we check
= that the precondition of m in o’s dynamic type (which the executed body relies
on) is fulfilled.
= that the postcondition of m in o’s static type (which the caller relies on) is ful-
filled.

2.3.2 Specification inheritance
- Behavioral subtyping can be enforced by inheriting specification from supertypes.



The invariant of type S is the conjunction of the invariant declared in S and the invariants de-
clared in the supertypes of S. Analogous for history constraints.

2.3.2.1 Simple Inheritance of Method Contracts

The precondition of an overriding method is the disjunction of the precondition declared for the
method and the preconditions declared for the methods it overrides.

The postcondition of an overriding method is the conjunction of the postcondition declared for
the method and the postconditions declared for the methods it overrides.

Problem: The rule for postconditions becomes too restrictive. Consider a method remove of a
class Set with precondition contains (x), and a postcondition that says the size of the set
decreased by one. If one would want to write a subclass with true as precondition, the method
is not able to fulfill the postcondition.

2.3.2.2 Improved Rule for Postcondition Inheritance

2.3.3

2.3.4

A method must satisfy its postcondition only if the caller satisfies the precondition. That is, every
postcondition is implicitly interpreted as o1d (Pre;.,) => PoStr.n

The postcondition of a method is the conjunction of these implications for the declared and in-
herited contracts.

Types as Contracts
Types can be seen as a special form of contracts, where static checking is decidable. Consider an
operator type (x) that yields the dynamic type of x.

o Forafield p of type P we have an invariant type (p) <: P

o For a method with parameter a of type A we have a precondition type (a) <: A

o For a method with return value r of type R we have a postcondition type (r) <: R
Subtyping now gives us covariance for fields and method results (stronger invariant and post-
conditions) and contra-variance for method arguments (weaker preconditions).

Immutable Types
Objects of immutable types do not change their state after construction, which has several ad-
vantages:
o No unexpected modifications of shared objects
o No thread synchronization necessary
o Noinconsistent states
Subtype relation of mutable and immutable types
o Immutable types as subtype: Not possible because mutable type has wider interface.
o Mutable types as subtype: The mutable type does not specialize the behavior.
o The clean solution is to have no subtype relation between mutable and immutable
types. The only exception is Object, which has no history constraint.



3 Inheritance

3.1 Inheritance and Subtyping
- Subtyping expresses classification (substitution principle and subtype polymorphism)
- Inheritance is a means of code reuse (through specialization)
- Inheritance is usually coupled with subtyping, and we use the term subclassing to refer to the
combined mechanism of subtyping and inheritance.
- Simulation of subclassing with delegation
o Subclassing can be simulated by a combination of subtyping and aggregation (which can
useful in languages with single inheritance)
o Example for workaround with aggregation

interface Person { class Personimpl
void print( ); implements Person {

} String name; :
void print(){ ...} | Subtyping
Personlmpl( String n ) { name =n; }

interface Student extends Person {

int getRegNum( );
) getRegNum() Subtyping | }

class Studentimpl implements Student {

Person p; < . m
int regNum; Aggregation
Studentimpl( String n, int m ) { p = new Personimpl(n ); regNum =rn; }

int getRegNum( ) { return regNum; }
void  print() { p-print( ); System.out.printin( regNum ); }

{ Delegation H Specialization ——

o 00-programming can do without inheritance, but not without subtyping. Inheritance is

thus not a core concept, but subtyping is.

3.1.1 Problems with Subclassing
- Consider two classes Set and BoundedSet, where BoundedSet specializes the behavior of
the add method to have a precondition size < capacity.
o Syntactically, the two classes could be subtypes of each other, but semantically, not:
®» BoundedSet is not a behavioral subtype of Set, as the precondition of the
add method is strengthened.
= Setis not a behavioral subtype of BoundedSet, as Set cannot guarantee an
invariant that is at least as strong as size <= capacity (the invariant of
BoundedSet).
o However, large parts of the implementation are identical, and thus this code should be
reused.
- Solution 1: Aggregation
o BoundedSet uses Set and delegates most calls to Set.
o No subtype relation, and thus no polymorphism or behavioral subtyping requirements.
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o Only possible if subtype relation is not needed. Consider classes Polygon and Rec-
tangle. Clearly, Rectangle should be a subtype of Polygon, but Polygon might
have a method addvertex, which cannot be supported by Rectangle.

- Solution 2: Creating new objects.

o The addVertex method returns its result (of type Polygon). Instead of just adding a
vertex to its own objects, the addVertex method in Rectangle can create a new
object of type Pentagon with the vertex added as needed.

o For BoundedsSet, this solution might work (add of BoundedSet can return a normal
Set if capacity is exceeded), but this is most likely not what the user wants or expects.
Of what use is a bounded set, if by adding elements it just gets converted to a regular
set?

- Solution 3: Weak superclass contract

o Behavioral subtyping is always relative to a contract. We can introduce a superclass Ab-
stractSet with very weak contracts (true for both pre- and postcondition), and
strengthen the subtype contracts via postconditions.

o Problems might arise in verification. The method add in Set has a postcondition con-
tains (o) and is implemented as super.add (o), but how can we show that this
postcondition is actually established, if the postcondition of the super method does not
guarantee us anything?

o One solution to this problem are static contracts, which specify a given method imple-
mentation, and are only used for statically-bound calls (e.g. super calls). No behavioral
subtyping needed.

- Solution 4: Inheritance without subtyping

o Some languages support inheritance without subtyping (e.g. C++ with private and pro-

tected inheritance, or Eiffel with expanded inheritance)

Aggregation Private Inheritance

- Both allow code reuse without establishing a subtype relation. No subtype polymorphism and no be-
havioral subtyping requirements.

- More overhead: two objects at run-time, boil- - Private inheritance might lead to unnecessary
erplate code for delegation, access methods for multiple inheritance
protected fields

3.2 Dynamic Method Binding
- Static binding: At compile time, a method declaration is selected for each call based on the stat-
ic type of the receiver expression.
- Dynamic binding: At run-time, a method declaration is selected for each call based on the dy-
namic type of the receiver object.
- Dynamic method binding enables specialization and subtype polymorphism. However, there are
important drawbacks:
o Performance: Overhead of method look-up at run-time
o Versioning: Dynamic binding makes it harder to evolve code without breaking subclasses

11



3.21

3.2.2

Fragile Baseclass Problem
Software is not static (maintenance, bug fixing, reengineering)
Subclasses can be affected by changes to superclasses
How should we apply inheritance to make our code robust against revisions of superclasses?
Example: Selective override
o Consider again a class Set with methods add and addal1l, where addAl11 calls add
repeatedly. A subclass might implement counting the number of elements by incre-
menting a field in add. If the method addA11 class Set later is changed to directly add
the elements instead of calling add, our subclass gets broken.
Rules for proper subclassing
o The subclass depends on the implementation of add, and not only on its con-
tracts/interface documentation.
o The superclass should not change calls to dynamically-bound methods, as this potential-
ly breaks subclasses. Do not add, remove or change the order of such calls.
The subclass should also override all methods that could break invariants.
The subclass should avoid specializing classes that are expected to be changed (often).

Binary methods
Binary methods take a receiver and one explicit argument (e.g. equals). Often, the behavior
should be specialized depending on the dynamic types of both arguments.
Example: Consider a class Shape with subclasses like Rectangle or Circle. There might be
a method intersect that intersects two shapes, where for some special instances (e.g. inter-
section two rectangles) we would like to use specialized, more efficient code.
Solution 1: Explicit type tests
o Type test and conditional for specialization based on dynamic type of explicit argument.
o Problems: Tedious to write, code is not extensible and requires a type cast.
Solution 2: Double invocation

o Additional dynamically-bound call for specialization based on dynamic type of explicit
argument.

o In our example, we would introduce methods like intersectShape and inter-
sectRectangle that then contain the most efficient code, and intersect would
simple call the appropriate method on the explicit argument.

o Note that this is also called visitor pattern. Shape corresponds to both Node and Vis-
itor, intersect to Node.accept and intersectXtoVisitor.visitX.

o Problems: Even more tedious to write, and requires a modification of the superclass
(which might not always be possible, e.g. for equals).

Solution 3: Multiple dispatch

o Some research languages allow method calls to be bound based on the dynamic type of

several arguments.

12



class Shape { class Rectangle extends Shape {
Shape intersect( Shape s ) { Shape intersect( Shape@Rectangler ) {
/I general code for all shapes /1 efficient code
} }
} }

Static type
of r

Dispatch
onr

o Problems: Performance overhead of method look-up at run-time, and there are extra
requirements needed to ensure that there is a unique best method for every call.

3.3 Multiple Inheritance
Problems of multiple inheritance

o Ambiguities: Superclasses may contain fields and methods with identical names and sig-
natures.
o Repeated inheritance (diamonds): A class may inherit from a superclass more than once.
How many copies of the superclass members are there? How are the fields initialized?
- Ambiguity resolution: merging methods
o Related inherited methods can often be merged into one overriding method, in which
case the usual rules for overriding apply (type rules and behavioral subtyping).
o Unrelated methods cannot be merged in a meaningful way, even if the signatures
match. The subclass should provide both methods, but with different names.
- Ambiguity resolution: explicit selection
o The ambiguity can be resolved by the client if he explicitly selects one or another meth-
od.
- Ambiguity resolution: renaming
o Inherited methods can be renamed, and dynamic binding then takes renaming into ac-
count.
- How many copies of superclass fields?
| FileWriter | [ FileWriter

extends™.,

B . extends extends
\ Student \ \ Assistant \ \ Loggable \ \ Sensor \
v, R ¥, B
"~-.,gxtenq§.-“' "~~.,gxtend'.s‘.v"

O +

PhDStudent LoggingSensor

o One copy (Eiffel with default, C++ with virtual inheritance)
o Multiple copies (Eiffel with renaming, C++ with non-virtual inheritance)

3.4 Inheritance and Object Initialization
- Superclass fields are initialized before subclass fields. This helps preventing the use of uninitial-
ized fields, e.g. in inherited methods.
- Order is typically implemented via mandatory call of superclass constructor at the beginning of
each constructor.
- With non-virtual inheritance, there are two copies of the superclass fields, and the superclass
constructor is thus called twice to initialize both copies.
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- With virtual inheritance there is only one copy of the superclass fields. Who gets to call the su-

perclass constructor?
Person

o C++ Solution

Constructor of repeated superclass is . .
called only once by the smallest subclass, Student | | [ Assistant
V.,

+ e,

, O

which need to call the constructor of the

e, extends.

virtual superclass directly.

PhDStudent
Example:

class Person { class Student : virtual public Person {
Address* address; public:
int workdays; Student( Address* a ) : Person(a, 5){};
public: h
Person( Address* a, intw ) {
address = a; class Assistant: virtual public Person {
workdays = w; public:
): Assistant( Address* a ) : Person(a, 6 ){},
¥ it
class PhDStudent : public Student, public Assistant {
public:

PhDStudent( Address* a ) : Person( a, 7 ), Student( a ), Assistant(a ) { };
3

Non-virtual inheritance is default, thus programmer need foresight.

Constructors cannot rely on the virtual superclass constructors they call (in the
above example, the constructor of Student cannot assume that workdays
equals 5 at the beginning of the constructor, since if it is called in the context of
a PhDStudent, the Person constructor will be called with a value of 7.

o Eiffel solution

Eiffel does not force constructors to call superclass constructors, and the pro-
grammer has full control.

No call of superclass constructor: Subclasses have to initialize inherited fields
(code duplication and subclasses need to understand superclass implementa-
tion)

Always call superclass constructor: Constructors of repeated superclasses get
called twice (what if they have different arguments?). This is also problematic if

the constructor has side-effect.

Pros Multiple Inheritance Cons Multiple Inheritance
- Increases expressiveness - Ambiguity resolution (explicit selection, merg-
- Avoids overhead of using the delegation pat- ing, or renaming)
tern - Repeated inheritance (complex semantics, ini-

tialization, renaming)
- Complicated!
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3.5 Traits

Mixins and traits provide a form of reuse

o Methods and state that can be mixed into various classes
o Example: Functionality to persist an object
Main applications are making thin interfaces thick, and stackable specializations

Language that support mixins or traits: Python, Ruby, Scala
Declaring traits in Scala

Traits extend exactly
one superclass (and

Traits may possibly other traits)
have fields | trait Backup extends Cell {

var backup = 0;

N

Traits may override def put( v: Int) ={
override backup = value

superclass super.put( v )
methods }

def undo = { super.put( backup )}

} Scala

Traits may
declare
methods

- Mixing-in traits

class FancyCell extends Cell with Backup { ‘

Traits can be mixed-
} in when classes are
j declared
def main( args: Array[String] ) { \

val a = new Cell with Backup

Traits can be mixed-
in when classes are
instantiated

Class must be a subclass of its traits’ superclasses (otherwise we would get multiple inher-
itance).

- Each trait defines an abstract type, similar to interfaces.

Ambiguities are resolved by merging. In particular, there is no scope-operator like in C++ or re-
naming as in Eiffel.

o Subclasses override all mixed-in methods with the same method. However, this does
not work for mutable fields, in which case the field can be overridden by a method. It is
possible to access the fields of supertypes using super [Type] . fieldName.

3.5.1 Linearization

Linearization is the key concept to understanding the semantics of Scala traits. It brings the su-
pertypes of a type in a linear order.

- For adefinition C extends C; with C, .. with C,the linearization L (C) is defined as
L(C) = C, L(Ch) + ..+ L(Cy)
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3.5.2

3.5.3

o + is concatenation, where elements of the right operand replace identical elements of
the left operand. That is, only the last occurrence of any type in the linearization is in-
cluded.

Overriding and super-calls are defined according to this linear order.
Subclasses only inherit one copy of repeated superclasses (just like Eiffel and virtual inheritance
in C++). The initialization order of classes and traits is the reverse linear order.

o Each constructor is called exactly once.

o Constructors of superclasses of traits must not take arguments.

= Fields must be initialized in subclasses.
=  Support through abstract constants.
=  Programmers need foresight.

Reasoning about traits
Stackable specializations: with traits, specializations can be combined in flexible ways.
Behavioral subtyping with traits

o Overriding of trait methods depends on order of mixing

o Behavioral subtyping can only be checked when traits are mixed in.
Reasoning: traits are very dynamic, which complicates static reasoning.

o Traits do not know how their superclasses get initialized.

o Traits do not know which methods they override.

o Traits do not know where super-calls are bound to.

Summary
Traits party solve problems of multiple inheritance: Linearization resolves some issues ambigui-
ties and initialization
Other problems remain
o Resolving ambiguities between unrelated methods
o Initializing superclasses
And new problems arise
o No specification inheritance between trait methods
o What to assume about superclass initialization and super-calls
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4 Types

4.1 Bytecode Verification

4.1.1

4.1.2

Mobile code as a motivation
o Download and execution of code, e.g. as Java applets
o Upload of code to customize a server
o Automatic distribution of code and patches in distributed systems
Class loaders
o Programs are compiled into platform-independent bytecode that is organized into class
files.
o The bytecode is interpreted on a virtual machine, and the class loader gets code for
classes and interfaces on demand.
o Programs can also contain their own class loaders.
Mobile code cannot be trusted
o Code may not be type safe
o Code may destroy or modify data
o Code may expose personal information
o Code may purposefully degrade performance (denial of service)
How can we guarantee a minimum level of security with an untrusted code producer and un-
trusted compiler?

Java Virtual Machine and Java Bytecode
Java Virtual Machine
o JVM is stack-based, and most operations pop their operands from a stack and push a re-
sult.
o Registers store method parameters and local variables.
o Stack and registers are part of the method activation record.
Java bytecode
o Instructions are typed.
o Load and store instructions access registers.
o Control is handled by intra-method branches (goto, conditional branches).
A proper execution requires that
o Eachinstruction is type correct
o Only initialized variables are read
o No stack over- or underflow occurs
o Etc.
JVM guarantees these properties by bytecode verification when a class is loaded and dynamic
checks at run-time.

Bytecode Verification via Type Inference
The bytecode verifier simulates the execution of the program, where operations are performed
on types instead of values.

17



- For each instruction, a rule describes how the operand stack and local variables are modified.

- Errors are denoted by the absence of a transition (type T
mismatch, or stack over- or underflow). inmat
- Types of the inference engine
o Primitive types, object and array reference types  int[ ] float[ ] C Object] ]
o null type for the null reference C’[]
o T for uninitialized registers >y

- Rules
o The maximum stack size MS and the maximum number of parameters and local varia-
bles ML are stored in the class file.
o Rule for method invocation uses method signature, no jump.

iconst n: astore n:

(S,R)—= (int.S,R), if S| < MS (t.SSR) > (S,R{n«1t}),
if0<n<MLAt<:Object

iload n:

(S,R)—= (int.SR), invokevirtual C.m.c:

fO<n<MLAR(nN)=intA|S <MS (th. .t .t SR)—>(rSR), if
c=r(t,.. . t)Aat<iCat, <t

o Branches lead to joins in the control flow, and if an instruction has several predecessors,
the smallest common supertype is selected (or T if no other common supertype exists).
= With multiple subtyping, several smallest common supertypes may exist.
= The JVM solution is to ignore interfaces and treat all interface types as Object.
» invokeinterface I.m cannot check whether the target object imple-
ments interface I, and thus a run-time check is necessary.
- The inference algorithm is a fixpoint iteration
in(0):=([],[Pgs---.,Pns T,--.,T])
worklist := { i | instr; is an instruction of the method }
while worklist = & do
I := min( worklist )
remove i from worklist
out(i) :=apply_rule(instr, in(i))
forall g in successors( i) do
in( q ) := pointwise_scs(in( q ),out(i))
if in( q ) has changed then worklist := worklist U { q }
end
end
o pointwise scs computes the smallest common supertype of two vectors, and is
undefined for stacks of different sizes.
- Advantages of type inference
o Determines the most general solution that satisfies the typing rules.
o Might be more general than what is permitted by the compiler.
o Very little type information required in class files.
- Disadvantages
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o Fixpoint computation might be slow.
o Solution for interfaces is imprecise and requires run-time checks.
- The alternative is bytecode verification via type checking which exists since Java 6.

4.1.3 Bytecode Verification via Type Checking

- Class files are extended to store type information, e.g. ([int], [C,int,T]).

- Type information can be declared for each bytecode instruction, and is required at the begin-
ning of all basic blocks (i.e. at jump targets, and at every entry point of an exception handler).
This includes all join points.

- Computation of smallest common supertype no longer needed, which avoids the fixpoint com-
putation and the interface problem.

- Type checking algorithm

foreach basic block of a method body do JW
in = types( start )

foreach { i | instr; is an instruction of basic block } do
n.= apply_rule( Instr, .In ) Check conditions and infer
forall g in successors( i) do next configuration
if types( q ) is declared then
check that in is assignable to types( q)

in = types(q) Check
declared types

end Use declared
end fHmp

4.2 Parametric Polymorphism
- Not all polymorphic code is best expressed using subtype polymorphism. For instance consider
writing a class Queue to store objects of a certain type.
- Classes and methods can be parameterized with type parameters.
o Clients provide instantiations for these type parameters.
o Modularity: The generic code is type-checked once and for all (without knowing the in-
stantiations).
- Type-checking the generic code often requires information about its type argument (e.g. availa-
bility of methods). This can be expressed using upper bounds. Example:
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class Queue<T extends Comparable<T>> {
T elem; T

~ |
Queue<T=> next;

Typecheck under the

void enqueue(Te) assumption
if(next == null ) { .| T <: Comparable<T>

else { =
if( e.compareTo(elem ) <=0){
next.enqueue( elem );
elem =g;
} else next.enqueue( e );

}
}

} Java

- Subtyping and generics: Generic types are only statically type-safe, if they are non-variant.

o Covariance is unsafe when the generic type argument is used for variables that are writ-
ten by clients (i.e. mutable fields and method arguments).

o Contravariance is unsafe when the generic type argument is used for variables that are
read by clients (i.e. fields and method return values).

Java/C# solution: Generic types are non-variant.
Eiffel solution: Generic types are covariant, which is in line with covariant method pa-
rameters and fields, but is not statically type-safe.

o Scala solution: By default, generic types are non-variant, but the programmer can supply
variance annotations. In this case, the type checker imposes restrictions on the positions
the type parameters can be used.

= A covariance annotation (+) is useful if type parameter only occurs in positive
positions (result types and types of immutable fields).
= A contravariant annotation (-) is useful if type parameter only occurs in nega-
tive positions (parameter types).
- Working with non-variant generics: There are two ways to write code that works with different
instantiations of generic classes.
o Method type parameters
o Wildcards

4.2.1 Wildcards
- A wildcard represents an unknown type, and can be interpreted as existential type. “There is a
type argument T such that c has type Collection<T>". The existential quantifier is automat-
ically instantiated by the type system.

static void printAll{ Collection<?> ¢ ) {
for ( Object e : ¢ ) { System.out.printin( e ); }

} Java

- Two different wildcards introduce two existential types, which need not to be the same.

- Wildcards can be constraint by lower and upper bounds.
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class Cell<T> {
T value;

void copyFromT( Cell<T> other ) {
value = other.value;

N |}
Typecheck under .
the assumption void copyFrom( Cell<? extends T> other ) {
2< T 1 value = other.valug;
/
}
void copyTo( Cell<? super T> other ) {
O\ = - }
Typecheck under — other.value = value; Wildcard can
the assumption }} also have
T<:7?
y. lower bounds )

4.2.2 Method Type Parameters
- Often, wildcards can be replaced by additional method or class type parameters (C# does not
have wildcards).
- Method type parameters
o Cannot be used for fields
o Do not allow upper bounds
o Allows different types parameters to be equal (e.g. void <T> foo(T a, T b)),
something which is not possible with wildcards.
- Class type parameters
o Can be used for fields, but C<?> allows different instantiations, where a class type pa-
rameter instantiation is fixed over the lifetime of an object.

4.2.3 Type Erasure
- Java 1.4 introduced generics. For backwards compatibility, Sun did not want to change the virtu-
al machine, and thus generic type information is erased by the compiler:

o C<T>istranslated to C
o T istranslated to its upper bound
o Casts are added where necessary

- Only one class file and only one class object to represent all instantiations of a generic class.

- Example:
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class Cell<T extends Object> {
T value;

void set( Tv){

class Cell {
Object value;

void set( Object v ) {

value = v; ] value = v;
) B )
Tget(){ Object get( ) {
return value; return value;
} }
} }

Cell<String> c;

¢ = new Cell<String>() ;
c.set( “Hello” );

String s = c.get( );

Cell ¢;

¢ = new Cell( );

c.set( “Hello” );

String s = ( String ) c.get( );

—

- The missing run-time information has various consequences:

o Generic types are not allowed with instanceof (asin ¢ instanceof C<T>).
o Class object of generic types is not available (as in C<T>.class).
o Arrays of generic types are not allowed (as in new C<T>[10]).
o Casts to generic types are not checked at runtime (asin (C<T>) c)
o Static fields are shared by all instantiations of a generic class.
- As C# does not have type erasure, those limitations do not apply to C#.

4.2.4
- Templates allow classes and methods to be parameterized, where client provide instantiations

C++ templates

for template parameters.

- The compiler generates a class for every template instantiation, and the type checking is done
for this generated class, not the template. Type errors are only found when the corresponding
code is used.

o There is no need for upper bounds on type parameters, as the availability of methods is
not checked anyway (in the template code).
o Template has to document (informally) what it expects from its type parameters.

- If two files using the same template with the same type instantiation are used, but compiled
separately, the executable will contain multiple copies of the same type and corresponding
code.

- Templates can be used for meta-programming:
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template <int n> class Fact { Template parameters
public: need not be types
static const int val = Fact<n-1>::val * n;
5
class Fact<0> { Templates can }
public: be specialized
static const int val = 1; ‘ Compiler generates
b _ . these instantiations )
int main( ) {
printf( "fact 3 = %d\n", Fact<3>::val );
Through constant hs od\n", Fact<4>:val );
propagation, values printf( "fact 5 = %d\n", Fact<5>::val );
are computed by J/ return O;
compiler }
- Modular type checking of generic classes - Type checking per instantiation
- Only one copy of code - Code duplication
- Run-time support desirable - No need for run-time support, as every instanti-
- No meta-programming ation results in its own type
- Based on sophisticated type theory - Meta-programming is Turing-complete
- “Glorified macros”
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5 Information Hiding and Encapsulation

5.1 Information Hiding
Information hiding is a technique for reducing the dependencies between modules:

o The intended client is provided with all the information to use the module correctly, and
with nothing more.
o The client uses only the (publicly) available information.

Objectives
o Establish strict interfaces
o Hide implementation details
o Reduce dependencies between modules
= (Classes can be studies and understood in isolation
= (Classes only interact in simple, well-defined ways
- Theclient interface of a class contains
Class name
Type parameters and their bounds
Super-class (only for subtyping information)
Super-interfaces

O O O O

Signatures of exported methods and fields
Client interface of direct superclass
- What about inheritance? Is the name of the superclass part of the client interface or an imple-
mentation detail? In Java, inheritance is done by subclassing, and the subtype information must
be part of the client interface.
- Various other interfaces exist
o Subclass interface
= Efficient access to superclass fields
= Access to auxiliary superclass methods
o Friend interface
= Mutual access to implementations of cooperating classes
= Hiding auxiliary classes
o And more

Expressing information hiding
o Java: access modifiers

= public: client interface
= protected: subclass and friend interface
= default access: friend interface
= private: implementation
o Eiffel: clients clause in the feature declarations
= feature {ANY}: client interface
= feature {T}: friend interface for class T
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= feature {NONE}: implementation (only “this”-object)
= All exports include subclasses
- Safe changes
Consistent renaming of hidden elements
Modification of hidden implementations as long as the exported functionality is pre-
served
o Access modifiers and clients clauses specify what classes might be affected by a change.
- Exchanging implementations
o The observable behavior must be preserved
o Exported fields limit modifications severely
= Use getter and setter instead
= Uniform access principle in Eiffel
o Modifications are critical
= Fragile base class problem
=  Object structures

5.2 Encapsulation
- Objective
o A well-behaved module operates according to its specification in any context in which it
can be reused.
o Implementations rely on consistency of internal representations.
o Reuse contexts should be prevented from violating consistency.

- Definition: Encapsulation is a technique for structuring the state space of executed programs. Its
objective is to guarantee data and structural consistency by establishing capsules with clearly
defined interfaces.

o Encapsulation deals mainly with dynamic aspects.
o There are different levels of encapsulation. Capsules can be:
= |ndividual objects
= Object structures
= Aclass (with all of its objects)
= All classes of a subtype hierarchy
= A package (with all of its classes and their objects)
= Several packages
o Encapsulation requires a definition of the boundary of a capsule and the interface at the

boundary.

5.2.1 Consistency of Objects
- Objects have (external) interfaces and (internal) representation.
- Consistency can include properties of one execution state or relations between execution

states.
- The internal representation of an object is encapsulated if it can only be manipulated by using

the object’s interface.
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5.2.2

5.2.3

Example 1
o A class might have an invariant about a public field, but exported fields allow objects to
manipulate the state of other objects and thereby breaking such an invariant.
o Solution: Apply proper information hiding
Example 2
o In example 1, one might make the field protected. But now, a subclass might introduce
(new or overriding) methods that break the consistency.
o Solution: Behavioral subtyping

Achieving Consistency of Objects

Apply encapsulation: Hide internal representation wherever possible.

Make consistency criteria explicit by using contracts and informal documentation (e.g. invari-
ants).

Check interfaces: Make sure that all exported operations of an object (including subclass meth-
ods) preserve all documented consistency criteria.

Invariants
Invariants express consistency properties and the textbook solution is that the invariant of an
object o has to hold in the pre- and poststates of o’s methods.
Assuming that all objects o are capsules (i.e. only methods executed on o can modify o’s state,
and the invariant of an object o only refers to the encapsulated fields of o), we have to show for
each invariant:
o That all exported methods preserve the invariants of the receiver object.
o That all constructors establish the invariants of the new object.
Object consistency in Java
o Declaring all fields private does not guarantee encapsulation on the level of individ-
ual objects.
Objects of the same class can break each other’s invariants.
Eiffel supports encapsulation on the object level with feature {NONE}.
Invariants for Java (simple solution)
= Assumption: The invariants of object o may only refer to private fields of o.
=  For each invariant we have to show
e That all exported methods and constructors of class T preserve the in-
variants of all objects of type T.
e That all constructors in addition establish the invariants of the new ob-
ject.
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6 Object Structures and Aliasing

6.1 Object Structures
- Objects are the building blocks of object-oriented programming. However, interesting abstrac-
tions are almost always provided by a set of cooperating objects.
- Definition: An object structure is a set of objects that are connected via references.

6.2 Aliasing
- Definition (general): An alias is a name that has been assumed temporarily.
- Definition (object-oriented programming): An object o is aliased if two or more variables hold
references to o.
o Variables can be fields, static fields, local variables (including this), formal parameters
or results of method invocations.
- Definition: An alias is static if all involved variables are fields of objects or static fields. An alias is
dynamic, if it is not static.
o Static aliasing occurs in the heap, where dynamic aliasing involves stack-allocated varia-
bles.

6.2.1 Intended Aliasing

- Efficiency

o In object-oriented programming, data structures are usually not copied when passed or
modified.

o Aliasing and destructive updates make object-oriented programming efficient.

- Sharing
o Aliasing is a direct consequence of object identity.
o Objects have state that can be modified.
o Objects have to be shared to make modifications of state effective.

6.2.2 Unintended Aliasing
- Capturing
o Capturing occurs when objects are passed to a data structure and then stored by the da-
ta structure.
o Capturing often occurs in constructors (e.g. streams in Java).
o Problem: Alias can be used to bypass the interface of the data structure.
- Leaking
o Leaking occurs when data structures pass a reference to an object, which is supposed to
be internal to the outside.
Leaking often happens by mistake.
Problem: Alias can be used to bypass the interface of the data structure.

6.3 Problems of Aliasing
- Observation: Many well-established techniques of object-oriented programming work for indi-
vidual objects, but not for object structures in the presence of aliasing.
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o Information hiding and exchanging implementations (e.g. implementing addElems of
ArrayList via capturing or coping. The observable behavior changes, even though
contracts don’t).

o Encapsulation and consistency (invariants can be violated via aliases).

- Other problems

o Synchronization in concurrent programs: Monitor of each individual object has to be
locked to ensure mutual exclusion.

o Distributed programming: For instance, parameter passing for remote method invoca-
tion.

o Optimizations: For instance, object inlining is not possible for aliased objects.

6.4 Encapsulation of Object Structures
- We need better control over objects in an object structure to avoid the problems with aliasing.
- Approach:
1. Define roles of objects in object structures.
2. Assign a tag (alias mode) to every expression to indicate the role of the referenced ob-
ject.
3. Impose programming rules to guarantee that objects are only used according to their
alias mode.
- Roles in object structures
o Interface objects (peer mode) are used to access the structure. They can be used in any
way objects are usually used (passed around, changed, etc.).
o Internal representation (rep mode) of the object structure. Objects referenced by rep-
expressions can be changed and must not be exported from the object structure.
o Arguments (arg mode) of the object structure. Objects must not be changed through
arg-references, but can be passed around and aliased freely.
- Meaning of alias modes
o Alias modes describe the role of an object relative to an interface object. Informally,
references
= with peer mode stay in the same context.
= with rep-mode go from an interface object into its context.
= with arg-mode may go to any context.

6.4.1 Simplified Programming Discipline
1. No role confusion.
- Expressions with one alias mode must not be assigned to variables with another mode.
2. No representation exposure.
- rep-mode must not occur in an object’s interface.
- Methods must not take or return rep-objects.
- Fields with rep-mode may only be accessed no this.
3. No argument dependence.
- Implementations must not depend on the state of argument objects.
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No representation exposure

O

O

rep-objects can only be referenced by their interface objects or by other rep-objects of
the same object structure.

rep-objects can only be modified by methods executed on their interface objects, or by
methods execute on rep-objects on the same object structure.

rep-objects are encapsulated inside the object structure.

Invariants for Object Structures

O

O

The invariant of object o may depend on encapsulated fields of o and fields of objets
that o references through rep-references.
Interface objects have full control over their rep-objects.

No argument dependence

@)

O

@)

Objects references through arg-references may be freely aliased.
Objects structures have no control over the state of their argument objects.
Invariants must not depend on fields of argument objects, but can depend only on their

identity.
private /*arg */ T v, w;
/linvariant v 1= w -- legal
[linvariant vfl=wf  --illegal

Alias control in modular programs

O

@)

O

Rules for rep-mode can in general not be checked modularly.

Subclasses can add new methods or override methods.

In Java, rep exposure can be prevented by access modifiers, £inal and inner classes.
However, this restricts subclassing severely.
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7 Ownership Types

7.1 Readonly Types
- Alias prevention (as seen in the last section) is not always wanted, as aliases are helpful to share
side-effect, and cloning objects is not very efficient.
o E.g. one often wants to share an address object of a person.
o In many cases, it suffices to restrict access to shared objects, and most commonly: grant
read access only.
- Requirements for readonly access
o Mutable objects
= Some clients can mutate the object, but others cannot.
= Access restrictions apply to references, not whole objects.
o Prevent field updates
o Prevent calls of mutating methods
o Transitivity: Access restrictions extend to references to sub-objects.

7.1.1 Readonly Access via Supertypes
- We can introduce readonly interfaces to ensure readonly access. For instance:

interface ReadonlyAddress { class Person {

public String getStreet( ); private Address addr;

public String getCity( ); public ReadonlyAddress
} getAddr( )

{ return addr; }
class Address public void setAddr( Address a )
implements ReadonlyAddress { { addr = a.clone( ); }
... I* as before ¥/} )

- Clients use only the methods in the interface
o Object remains mutable
o No field updates
o No mutating methods in the interface
- Limitations
o Reused classes might not implement a readonly interface (similar the discussion of
structural subtyping).
Interfaces do not support arrays, fields and non-public methods.
Transitivity has to be encoded explicitly, and sub-objects are required to implement
their own readonly interface.
o This solution is not safe
= No checks are made that methods in a readonly interface actually are side-
effect free.
= Readwrite aliases can occur, e.g. through capturing.
= Clients can use casts to get full access.

7.1.2 Readonly access in Eiffel
- Better support for fields
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o Readonly supertype can contain getters
o Field updates only on this object.
- Command-query separation
o Distinction between mutating and inspector methods
o But queries are not checked to be side-effect free
- Other problems as before
o Reused classes, transitivity, arrays, aliasing, downcasts

7.1.3 Readonly access in C++ via const pointers
- C++ supports readonly pointers
o No field updates and no mutator calls.

class Address { class Person {
string city; Address* addr;
public: public:
string getCity( void ) const Address* getAddr( )
{ return city; } { return addr; } Compile-time
. . . . Call of const
void setCity( string s ) void setAddr( Address a ) . error
) function allowed
{city=s;} {/* clone */}
}, CH++ }, C++

- const functions must not modify their receiver object.
- Limitations
o However, const-ness can be cast away; there are no run-time checks.
o const pointers are not transitive, and const-ness of sub-objects has to be indicated

explicitly.
C++ solution: Pros Cons

- const pointers provide readonly pointers to - const-ness is not transitive
mutable objects (prevent fields updates and - const pointers are unsafe (explicit casts are
calls of non-const functions) possible)

- Works for library classes - readwrite aliases can occur

- Support for arrays, fields and non-public meth-
ods

7.1.4 Readonly Types and Pure Methods
- Pure methods: Tag side-effect free methods as pure

Must not contain field updates
Must not invoke non-pure methods

o O O

Must not create objects
o Canonly be overridden by pure methods

o Each class or interface introduces two types
= Readwrite type rw T, denoted by T in programs
= Readonly type ro T, denoted by readonly T
- Subtyping
o Subtyping among only readwrite or only readonly types is defined as in Java:
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O

O

Type rules: transitive readonly

O

= [|f S extends or implements T, then rw S <:

rw Tandro S <: ro T

Readwrite types are subtypes of the corresponding readonly types:

" rw T <: ro T
Subtyping is defined by the transitive closure of
these rules.

Accessing a value of a readonly type or through
a readonly type should yield a readonly value.

Personp = ...
readonly Address a;
a = p.getAddr( );

donly int h = a.getPh ;
readonly int[ ] p/a ge ‘\one( );

We use a type combinatory to determine the -
type of field or array accesses and method invo- [ ro Address | » wintf]
; . 4
cations. ~"
> rw T ro T .
roint[ ]
rw T rw T ro T
ro T ro T ro T

Expressions of readonly types must not occur as receiver of

O

O

@)

a field update,
an array update, or
an invocation of a non-pure method.

Readonly types must not be cast to readwrite types.
Discussion

@)

O

Readonly types enable safe sharing of objects
Very similar to const pointers in C++, but

= transitive, and

= no casts to readwrite types.

o Allrules for pure methods and readonly types can be checked statically by a compiler.

O

Readwrite aliases can still occur, e.g. by capturing.

7.2 Topological types

Ownership model

O

O

O

e}

Each object has zero or one owner objects

The set of objects with the same owner is called a context

The ownership relation is acyclic
The heap is structured into a forest of ownership trees

Ownership types: We use types to express ownership information

o peer types for objects in the same context as this
o rep types for representation objects in the context owned by this
o any types for argument objects in any context
Type safety
o

Run-time information consists of the class of each objects, and the owner of each ob-

ject.
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O

Type invariant: the static ownership information of an expression e reflects the run-time
owner of the object o referenced by e’s value
= Ife hastype rep T, then o’s owner is this.
= If e hastype peer T,then o’s owner is the owner of this.
» [f e has type any T, then o’s owner is arbitrary (this can be seen as an existen-
tial type).

- The lost modifier (again, an existential type)

O

O

O

O

Some ownership relations cannot be expressed in the type system.
Internal modifier lost for fixed, but unknown owner is used.
Reading locations with 1ost ownership is allowed.

Updating locations with Lost ownership is unsafe.

- The self modifier

o Internal modifier is only used for the this literal to allow modification of fields on
this.
- Subtyping
o For types with identical ownership modifier, subtyping is defined asinJava. ForS <: T
we have
. rep S <: rep T
= peer S <: peer T
= any S <: any T
o rep types and peer types are subtypes of corresponding any types
= rep T <: any T
= peer T <: any T
o More rules for Lost modifier
= rep T <: lost T
= peer T <: lost T
= lost T <: any T
o Rules for self modifier

= self T <: peer T

- Viewpoint adaption

O

O

O

Again, we have a type combinatory
A field read v=e. f is correctly typed, if T (e¢) » T (f) <: T (V).
A field write e. f=v is correctly typed if 1 (v) <: 1 (e) » 1 (f). Furthermore,
T(e) » t(f),cannotbe lost.
Analogous rules for method invocations, where
= argument passing is analogous to field writes, and
= result passing is analogous to field reads.
Examples
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7.2.1

7.2.2

}
}

class LinkedList {

private rep Entry header;
public void add( any Objecto ) {

rep Entry newE = new rep Entry( o, header, header.previous );

class Entry {
private any Object element;
private peer Entry previous, next;
public Entry( any Object o, peer Entry p, peer Entryn ) {... }

Ownership information
is relative to this
reference (viewpoint)

| N
l‘" [ Entry | Enry | [ Entry | /| E' kEU = l ’,»'
ESip ESip EE] g
J / \\\ peer B peer = peer e /
Type combinatory
| 2 peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T
Owner-as-Modifier Discipline
Topological type systems can be used to strengthen encapsulation
o Prevent modifications of internal objects.
o Treat any and lost as readonly types.
o Treat self, peer and rep as readwrite T

types.

Additional rules enforce owner-as-modifier

o Field write e.f=v is valid only if 1 (e) is

self, peer or rep.

o Methodcalle.m(.

.) isonly valid if T (e) is

self, peer or rep, or mis a pure method.
A method may only modify objects directly or indirectly owned by the owner of the current

this object.

Consequences

rep and any types enable encapsulation of whole object structures.
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- Encapsulation cannot be violated by subclasses, via casts, etc.

- The technique fully supports subclassing, in contrast to solutions with £inal or private inner
classes.

- Accidental capturing is prevented, as any cannot be assigned to rep.

- However, leaking is still possible. Example (observable behavior changes):

class ArrayList { class ArrayList { peer ArrayList list = new peer ArrayList( );
private rep int[ ] array; private rep Entry header list.prepend( 0 );
private int next any int[ ] ia = list.getElems( );
public any int[ ] getElems( ) public void any int[ ] getElems( ) Ilst.prer?end( 10
assertia[0]==1;

|
{returnia;} { /* create new array */ }
o T
- Consistency of object structures
o Consistency of object structures depends on fields of several objects.
o Invariants are usually specified as part of the contract of those objects that represent
the interface of the object structure.
o The invariant of object o may depend on
= encapsulated fields of o, and
= fields of objects o references through rep references.
o Interface objects have full control over their rep objects.
- Summary
o Ownership types express heap topologies and enforce encapsulation.
o Owner-as-modifier discipline is helpful to control side effects:
= Maintain object invariants
=  Prevent unwanted modifications
o Other applications also need restrictions of read access:
= Exchange of implementations
= Thread synchronization
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8 Initialization

8.1 Simple Non-Null Types

Non-null type T ! consists of references to objects of type T.
Possibly-null type T2 consists of references to objects of type T, or null.
Simplified type invariant
o If the static type of an expression e is a non-null type, then e’s value at run-time is dif-
ferent from null.
Goal: prevent null-dereferencing statically
o Require non-null types for the receiver of each field access, array access and method
call.
o Analogous to preventing “message not understood” errors with classical type systems.
Subtyping and casting
o The values of type T! are a proper subset of T?. Therefore, forS <: T
= S! <: T!
= S5? <: T?
= T! <: T?
o Downcasts from possibly-null types to non-null types require run-time checks.
Type rules: expressions whose value gets dereferenced at run-time must have non-null type.
o Receiver of field access
o Receiver of array access
o Receiver of method call
o Expression of a throw statement

8.2 Object Initialization

8.2.1

Constructors Establish Type Invariant
The naive type invariant requires non-null fields to have non-null values at all times. However, at
the beginning of the constructor this invariant cannot possibly hold.
o ldea: make sure all non-null fields are initialized when the constructor terminates, and
weaken type invariant accordingly.
o Apply definite assignment analysis for fields in constructor (Eiffel’s solution for attached
types)
Problem 1: Method calls
o Method calls are dynamically bound, and (if we want to be modular) we therefore can-
not know that they do not access non-initialized fields.
Problem 2: Callbacks
o Even if we only call methods on other objects, it may still be the case that the other
method calls us back, and our method then possibly accesses non-initialized fields.
Problem 3: Escaping via method calls
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8.2.2

o If we pass out a reference to the this object in a constructor, other code might directly
(callback) or indirectly call a method on our object (or even just read a field), which po-
tentially access non-initialized fields.

Problem 4: Escaping via field updates

o Instead of passing out our reference to another method as argument, we could also

pass out a reference to this via a field update on another object.
Summary of definite assignment of fields

o Sound and modular checking of definite assignment for fields requires that a partly-

initialized object does not escape from its constructor
= Not passed as receiver or argument to a method call.
= Not stored in a field or an array.

Construction Types
Idea: design a type system that tracks which objects are under construction. For every class or
interface we introduce different types for references to objects under construction, and to such
objects whose construction is completed.
For every class or interface T, we introduce six types
o T! and T? (committed types)
o free T! and free T? (free types)
o unc T! andunc T? (unclassified types)
Subtyping
o T!and free T! aresubtypesofunc T!
o T?and free T? aresubtypesofunc T?
o No casts from unclassified to free or committed types
Type rules: field read
o Afield read expression e. f is well-typed if
= eiswell-typed
=  ¢&’stypeis anon-null type
o The type of e. f is given by the following table:

Declared type of £

T! T?
3 committed S! committed T! committed T?
8 free S! unc T? unc T?
o
e unc S! unc T? unc T?

Type rules: field write
o Afield write a. f=b is well-typed if
= aandDb are well-typed
= a’stype is a non-null type
= b’sclass and non-null type conforms to the type of a. £
= a’stypeis free, or b’s type is committed
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o The last requirement prevents storing non-committed references in fields of committed
receivers.
Type rules: constructor
o Constructor signatures include construction types for all parameters
= Receiver has free, non-null type
o Constructor bodies must assign non-null values to all non-null fields of the receiver.
= Definite assighment check
Type rules: methods and calls
o Method signatures include constructor types for all parameters
= Receiver has committed, non-null type, unless declared as free or unclassified.
o Overriding requires the usual co- and contravariance
o Calls are typed according to usual rules
Object construction

o Is construction finished when the constructor terminates? Not if there are subclass con-
structors that have not yet executed, which cannot be known modularly in general.

o Is construction finished when the new-expression terminates? Not if constructor initial-
izes fields with free references.

Local and transitive initialization

o Local initialization: all non-null fields must have non-null values.

o Transitive initialization: all reachable objects must be locally initialized.

o Committed references have to satisfy both local and transitive initialization.

Object creation scenario

o new-expression takes committed arguments only, but nested new-expressions can take
arbitrary arguments.

o After the new-expression terminates, all new objects are locally initialized, and new ob-
jects can only reference committed objects (constructor arguments) or each other, thus
all new objects can be typed as committed.

o llustrative example:

Termination

committed & e

arguments
/

T
new with ‘

N Time
Termination of
nested new

.

L Nested new with

Termination of || free or unclassified
nested new L arguments

J

Nested newﬁ
with committed
arguments

Type rules: new expressions
o Anexpression new C (ei) is well-typed if
= Allei are well-typed
= Class C contains a constructor with suitable parameter types
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o Thetypeofnew C(ei) is

- Arrays

committed C! if the static type of all ei is committed, and
free C! otherwise.

o An array describes two types of references: The reference to the array object, and the
references to the array elements. Bot can be non-null or possibly-null.

T
Non-null array with
Non-null array with =~ ) possibly-null
non-null elements Person! []1a; g elements
Person? []!b;-— ~——"7—7-——
- k —
Possibly-null arrayL — Personl [] 7 c; { (Possibly—null array
with non-null Person?[]7?d;

— | with possibly-null
elements ) ~ elements )

o Problems of array initialization

Arrays do not have constructors, thus it is unclear at what point the array needs
to contain non-null values.
Arrays are typically initialized in loops, but static analyses (such as definite as-

signment check) usually ignore loop conditions. Such an analysis is in general
not possible.

- (Partial) solution to array initialization

o Arrayinitializers, asin String![]! s = {“a”, “b”, “c¢”};

o Pre-filled arrays (Eiffel solution). However, it is unclear why a default object is any better
than null.
o Run-time checks (Spec# solution). In Spect# it is possible to assert that the array is now
fully initialized: NonNullType.AssertInitialized(s);
- Summary of initialization

o Object initialization has to establish invariants.

Non-nullness is just an example.

o General guidelines for writing constructors:

Avoid calling dynamically-bound methods on this.
Be careful when new objects escape from the constructor.
Be aware of subclass constructors that have not run yet.

8.3 Initialization of Global Data

- Most software systems require and maintain global data
o Factories

o Caches

o Flyweights

o Singletons

- Mainissues

o How do clients access the global data?
o How is the global data initialized?
- Design goals of initialization of global data
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O

O

O

Effectiveness

= Ensure that global data is initialized before first use.

=  Example: non-nullness
Clarity

= |nitialization has a clear semantics and facilitates reasoning.
Laziness

=  Global data is initialized lazily to reduce startup time.

Solution 1: Global variables and init-methods

O

O

O

o

Global variables store references to global data.
Initialization is done by explicit calls to init-methods.
Dependencies
= |nit-methods are called directly or indirectly from main method.
= To ensure effective initialization, main needs to know the internal dependencies
of the modules.
Summary
= Effectiveness
e Initialization order needs to be coded manually, which is error-prone.
= (Clarity
e Dependency information compromised information hiding.
= laziness
e Needs to be coded manually

Solution 1a; C++ initializers

O

O

Global variables can have initializers, which are executed before the main method.
= No explicit calls needed
= No support for laziness

The order of execution is determined by the order of appearance in the source code.
=  Programmers have to manage dependencies manually.

class Factory {
HashMap* flyweights;

Flyweight* create( Data*d ) { ... }

5

Factory* theFactory = new Factory( );

C++

Solution 2: Static fields and initializers

Static fields store references to global data.
Static initializers are executed by the system immediately before the class is first used
(first creation of instance of that class, call to static method, or access to a static field of
that class, and before static initializers of sub-classes).
Side effects
= Static initializers can have arbitrary side-effects, and thus reasoning about pro-
grams with static initializers is non-modular.

40



o Summary
= Effectiveness
e Static initializer may be interrupted.
e Reading un-initialized fields is possible.
= Clarity
e Reasoning requires keeping track of which initializers have already run.
e Side effects through implicit executions of static initializers can be sur-
prising.
= laziness
e Static initializers are not called upfront, but also not as late as possible.
o Static fields and procedural style
=  Procedural style: make all fields and operations of the global data static, i.e. use
the class object as global object.
= Disadvantages
e No specialization via sub-typing and overriding.
e No dynamic exchange of data structures.
e Not object oriented.
- Solution 2a: Scala’s singleton objects
o Scala provides language support for singletons
= Singleton objects may extend classes or traits, but cannot be further specialized.
o Not every global object is a singleton.
o Initialization is defined by a translation to Java, which means that the solution inherits
all pros and cons of static initializers.
- Solution 3: Eiffel's once methods
o once methods are executed only once.
o Result of first execution is cached and returned for subsequent calls.
o Mutual dependencies lead to recursive calls. Such calls return the current value of Re-
sult, which is typically not meaningful.
o Arguments are only used for the first execution of the method, arguments to subse-
quent calls are ignored.
o Summary
= Effectiveness
e Mutual dependencies lead to recursive calls.
e Reading uninitialized fields is possible.
= Clarity
e Reasoning requires keeping track of which once methods have run al-
ready (use of arguments, side effects).
= laziness
e once methods are executed only when the result is needed (as late as
possible).
- Summary of initialization of global data
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o No solution ensures that global data is initialized before it is accessed.
= How to establish invariants over global data?
=  For instance, all solutions are not suitable to ensure that global non-null varia-
bles have non-null values.
o No solution handles mutual dependencies.
=  Maybe the programmer should determine the initialization order with appropri-
ate restrictions.
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9 Object Invariants

9.1 Call-backs

Consider the following example

class Redundant { class Logger {

private int a, b; private Redundant r;

private Logger I;

/linvarianta ==b

public void set(intv){ }
a=v, }
llog( “Inside set” );
b=v;

}

public int div(intv ) {
returnv/(a-b+1);

}

} .
Other variants of the example exist

public void log( String m ) {
System.out.printin(m + r.div(5) ),

o Self-calls where the div method is called directly from set.
o Re-entrant locks and monitor invariants.
Solution 1: Re-establishing invariants
o Check invariant before every method call.
o However, this is overly restrictive, as most methods do not call back.
o Too expensive for run-time checking.
Solution 2: Static analysis
o Statically analyze the code of the callee to detect callbacks, and check invariant only if
call-back is actually possible.
o Not modular: for dynamically-bound methods, all overrides need to be known.
Solution 3: Explicit requirements
o Specify in each precondition which invariants the method actually requires.
o Check required invariants before every method call.
o Problems
= Writing the concrete invariant in the precondition violates information hiding.
=  Some methods require a large number of invariants (e.g. tree traversal).
Solution 4: Dented invariants
o Use a boolean field valid to indicate whether the object is valid or not. This can be
used to turn invariants off an on.
Every invariant inv is replaced by valid => inv.
Explicit requirements can be stated using the valid field, e.g. requires
this.valid && arg.valid.
o Problems
=  Programmers might forget to set valid field again.
= |nvariant still need to be checked before every method call.
= A method can break many invariants through direct field updates.
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9.1.1 Spec# Solution
- Basic methodology
o Every object has an implicit valid field. Objects can be valid or mutable.
o Eachinvariant is implicitly dented.
o Admissible invariants: The invariant of an object o may depend on field of o (and con-
stants). (will be relaxed later on)
o Enforce that invariants hold in all execution states, not just visible states.
= Un-dented invariants hold whenever the object is valid.
o Valid objects must not be modified. That is, for every field update o. f=x, check that o
is mutable.
- Maintaining object validity
o Setting the valid field to true might break the dented invariant, which is why the valid
field can only be modified through a special expose block.
=  Exposed object must initially be valid.
= Similar to non-reentrant lock block.
- Establishing object validity
o New objects are initially mutable, i.e. the valid field is initialized to false.
o After initialization, the un-dented invariant is checked and the valid field set to true (we
ignore inheritance here).
- Proof obligations
o Invariant of o holds after o has been initialized.
o Invariant of o holds at the end of each expose (o) block.
o Every expose operation is done on a valid object.
o Every field update is done on a mutable receiver.

- Examples
class Account { class Account {
invariant cur == Currency.CHF ==> balance % 5 == 0;
Check | void Exchange( Currencyl ¢ ) invariant cur == Currency.CHF
succeeds: |/ raquires this.valid && c.valid; ==> balance % 5 == 0
|_this is valid {
- ‘,_jﬁh L Account( Regulator! r ) {
(" Check exp‘osel this ) { _ cur = Currency.CHF;
s - era:nz_e = cur.Convert( balance, ¢ ); regulator = -
| ri:ﬁgzlzs regulator.Report( this ); } > ] : Invariant holds
- if( cur == Currency.CHF ) YO, e balance == 0
\balance =balance /5 * 5; ‘\\
} S ) Implicit:
} \] succeeds: | this.valid = true; |
-} \_invariant holds Spect Spect

Requirement about
expected invariants

class Account {
void Exchange( Currency! ¢ )
I/ requires this.valid && c.valid,;

class Account {

[ N
; a’s invariant is
|
) void Exchange( Currency! ¢ ) not expected

/I requires this.valid && c.valid; class Regulator { ~7

{ void Report( Acco,

class Regulator {
void Report( Account! a

{ In principle, methods la)

expose( this ) {

expose( this )1 can be called while

- . Sy
==~ invariant is broken

regulator.Report( this ); int b = a.GetBalanca( ); regulator.Report( this ); int b = a.GetBalance( );
. . . . i o I R
} Th,'s callis forbl'd'den ) } Call is allowed since ) fCall-backiis FOETTaen
} S (IEEEE } precondition holds . fon
does not hold since precondition
int GetBalance( ) } = int GetBalance( ) } . does not hold

/I requires this.valid
{ return balance; }

} Spect#t

// requires this.valid && a.valid

{
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9.2 Invariants of Object Structures
- Invariants often depend on more than the fields of the current object.
o Example: A person-object might have a field savings and an invariant that says the
person has a positive amount of money saved: savings.balance >= 0.
- Ownership-based invariants
o Admissible invariants: The invariant of an object o may depend on field of o and objects
(transitively) owned by o (and constants).
o Requirement: When an object o is mutable, so are o’s (transitive) owners, because an
update of o might break the owners’ invariants.

Enforcing mutable owners
o The owner is exposed before the owned object, and un-exposing works in the reverse
order.
o Additional checks for expose (0)
= Before expose, o must be valid and o’s owner must be mutable.
= Atthe end of expose, all objects owned by o must be valid.
- Heap snapshot
o Red (mutable), yellow (valid, mutable owner) and green (valid, valid owner) objects.

- Proof obligations
o Owner of newly created object is mutable.
o Invariant of o holds after o has been initialized.
o Invariant of o holds at the end of each expose (o) block and all objects owned by o
are valid.
o Every expose operation is done on a valid object with a mutable (or no) owner.
o Every field update is done on a mutable receiver.
- Observations of Spec# methodology
o Methodology relies on encapsulation of object structure. There is no strict enforcement
of owner-as-modifier discipline, but the owner must be exposed before owned object.
o Responsibility for invariant checking is divided
= A method implementation is responsible for the objects in the context of the re-
ceiver.
= Acaller is responsible for the objects in its context.
o Ownership-based invariants are too restrictive for many useful examples.
- Invariants and immutability
o Immutable objects can be freely shared.
o Invariants may depend on the state of shared immutable objects.
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o Immutability often leads to more reliable programs, especially for concurrency.
Invariants and monotonicity
o Many properties of objects evolve monotonically, e.g.
=  Numbers grow or shrink monotonically.
= References go from null to non-null.
o Invariants may depend on properties of shared objects guaranteed by their history con-
straint.
Invariants and visibility
o Invariants may depend on fields of shared objects if a modular static analysis can de-
termine all necessary checks.
o Invariants and fields are declared in the same module (common example: recursive data
structures).
Summary
o Sound, modular checking of object invariants is surprisingly difficult (call-backs, multi-
object invariants, inheritance).
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10 Reflection
- InlJavaitis possible to do dynamic type checking with the instanceof operator.
- Reflection: A program can observe and modify its own structure and behavior.
o Simplest form: Type information is available at run-time.
o Most elaborate form: All compile-time information can be observed and changed at run-
time.

Meta level Base level
5

e =

true

10.1 Introspection
- Class objects
o The class object for a class can be obtained by the predefined class-field, e.g. for class
Stringvia String.class.
-  Example: Field.get (Object ob7j), returns Object
o We can get the value of a field of an object obj at run-time.
o Safety-checks have to be done at run-time:
=  Type checking: does obj have that field?
= Accessibility: is the client allowed to access that field? It is possible to suppress
Java’s access check by calling setAccessible (true) on the field.
- ExampleClass.newInstance ()
o Again, safety checks have to be done at run-time:
= Type checking
e Does the class-object represent a concrete class?
e Does the class have a parameter-less constructor?
= Accessibility
e Are the class and the parameter-less constructor accessible?
- Java generics
o Due to Java’s erasure semantics, no generic type information is represented in the class
file and at run-time. This can lead to surprising results:

try { try {
LinkedList<String> list = new LinkedList<String>( ); LinkedList<String> list = new LinkedList<String>( );
Class ¢ = list.getClass( ); Class ¢ = list.getClass( );
Method add = c.getMethod( "add", String.class ); Method add = c.getMethod( "add", Object.class );
} catch( Exception e ) { } catch( Exception e ) {
System.out.printin( "Method not found" ); System.out.printin( "Method not found" );
} Java } Java
| Method not found | |7/ no exception |

10.1.1 Visitor-Pattern via Reflection
- The visitor pattern uses an additional dynamically-bound call for specialization on the dynamic
type of the explicit argument.

47



We can implement a visitor also via reflection and some naming conventions. Example of the
standard visitor pattern, compared with an implementation using reflection (error handling

omitted):

interface Visitor {
void visitExpr( Expr e );
void visitLiteral( Literal | );
void visitVariable( Variable v );

}

class Expr {
void accept( Visitor v )
{ v.visitExpr( this ); }

}

Construct

class PrintVisitor implements Visitor {
void visitExpr( Expre ){ ...}
void visitLiteral( Literal 1) { ... }
void visitVariable( Variable v ) { ... }

}

class Literal extends Expr {
void accept( Visitor v )
{ w.visitLiteral( this ); }

}

method name,
e.g., visitLiteral

abstract class Visitor {
void visit( Expre ) {
String name = "visit" + e.getClass( ).getName( );
Method m = this.getClass( ).getMethod( name, e.getClass( ) );

m.invoke( this, e ); Find method

} Invoke the visitX( X )
} method

[ ]

class EvalVisitor implements Visitor {

class Variable extends Expr {
void accept( Visitor v )
{ v.visitVariable( this ); }

in dynamic type
of this
class PrintVisitor extends Visitor {
void visitExpr( Expre ){...}
void visitLiteral( Literal 1 ) { ... }
void visitVariable( Variable v ) { ... }

}“.

} }

- Much simpler code (second dynamic dispatch is
implemented via reflection, no need for accept-

methods
- Flexible look-up mechanism (e.g. visit could
look for the most specific method)

must be done at run-time)

- Not statically safe (missing method detection

- Slower: many run-time checks are involved.

10.2 Reflective Code Generation
If code is represented as data, we can as well allow programs to create code from data.
Generate code dynamically according to user input and execution environment.
Examples include class loading in Java, or expression trees in C#

CH# expression trees
o Expression trees represent the abstract syntax tree of C# expressions and can be creat-
ed like any other data structure
o Class expression provides a compile-method, which compiles expression trees to exe-
cutable code (compilation happens during run-time).

o Main application is the generation of SQL queries.

Example:

Expression<Func<int, bool>> Build( string |, string op, int ¢ ) {
ParameterExpression |hs = Expression.Parameter( typeof( int ), | );

ConstantExpression ce = Expression.Constant( c, typeof( int ) );
BinaryExpression be = null;

switch (op ) {
case "<": be = Expression.LessThan( lhs, ce ); break;
case ">": be = Expression.GreaterThan( |hs, ce ); break;

}...

return Expression.Lambda<Func<int, bool>>
( be, new ParameterExpression[] { Ihs } );

} [ ]

AST for lambda-expression
I=>lopc
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\

Parse condition to

determine operator
and constant

class Filter {
void Demo( string condition, int[ ] data ) {
string op; int c;
Parse( condition, out op, out c );

Func<int, bool> filter = Build( "x", op, ¢ ).Compile( );

foreach (intiin data ) { Compile
if (filter(i)) Console.WriteLine(i); expression
} tree
} Invoke compiled
. \ﬁ lambda-expression
} cx

10.3 Summary

Applications Drawbacks
- Flexible architectures (plug-ins) - Not statically safe
- Object serialization - May compromise information hiding
- Persistence - Code is difficult to understand and debug
- Design patterns - Performance

Dynamic code generation
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11 Language features

11.1 C++

Weakly-typed language
Static method binding is default in C++ (and C#), only using the virtual keyword in front of meth-
ods allows dynamic binding.
Private (and protected) inheritance
o Inheritance without subtyping
Virtual inheritance (using keyword virtual in front of superclass)
o One copy of inherited fields
Non-virtual inheritance (default)
o Multiple copies of inherited fields

11.2 Eiffel

Strongly-typed language
Dynamic method binding is default
Expanded inheritance
o Inheritance without subtyping
Default inheritance gives one copy per inherited field
Renaming during inheritance results in multiple copies of inherited fields
Method arguments, fields and generic types are covariant, even though this is not statically
type-safe.

11.3 Java

Strongly-typed language
Dynamic method binding is default
Subtyping for access modifiers:
public <: protected <: default <: private
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