
Information Security FS2010 1

Stefan Heule

August 20, 2010

1License: Creative Commons Attribution-Share Alike 3.0 Unported (http://creativecommons.org/licenses/by-sa/3.0/)

http://creativecommons.org/licenses/by-sa/3.0/

Contents

I Ueli Maurer 1

1 Introduction and motivation 1

1.1 Basic definitions . 1

1.1.1 Terminology . 1

1.1.2 Basic security objectives . 1

1.1.3 Classification of security measures . 2

1.2 Digital objects . 2

1.2.1 The effect of digital objects in the real world . 2

1.2.2 Distinguishing good and bad digital objects . 3

1.2.3 Some basic problems of the information economy . 3

1.3 Three dilemmas . 3

1.4 Defining security . 3

1.4.1 Two approaches to defining security . 3

1.4.2 Modularity and composability . 3

1.4.3 The constructive approach . 4

1.5 High-level classification of security problems . 4

1.5.1 Unilateral security . 4

1.5.2 Multilateral security . 5

2 Cryptography - basic concepts 6

2.1 Defining security of cryptographic systems and functions . 6

2.2 Keyless cryptographic functions . 6

2.2.1 One-way functions . 6

2.2.2 Collision-resistant hash functions . 6

2.3 Randomness and pseudo-randomness . 6

2.3.1 Distinguishers . 6

2.3.2 Pseudo-randomness . 7

2.4 Secrecy, authenticity, and their abstraction . 7

2.4.1 Describing channels . 7

2.4.2 Secrecy and authenticity . 7

2.4.3 Availability . 8

2.4.4 A symbolism for channels and keys . 8

2.4.5 Timing aspects . 8

2.4.6 Trivial security transformation . 8

2.4.7 Key-transport security transformations . 8

2.5 Symmetric cryptosystems . 9

2.5.1 Concept and definition . 9

2.5.2 Types of symmetric cryptosystems . 9

2.5.3 Does encryption provide authenticity? . 9

2.5.4 Interpretation as security transformations . 10

2.6 Message authentication codes (MAC) . 10

2.6.1 Concept and definition . 10

2.6.2 Limitations of MACs . 10

2.7 Combining encryption and message authentication . 11

2.8 Public-key cryptography . 11

2.8.1 Concept and definition . 11

1

2.8.2 Interpretation as a security transformation . 12

2.8.3 Secret-key establishment using public-key encryption . 12

2.8.4 The Diffie-Hellman key-agreement protocol . 12

2.8.5 The RSA public/key cryptosystem . 13

2.9 Digital signatures . 13

2.9.1 Concept and definition . 13

2.9.2 Interpretation as security transformation . 13

3 Security in distributed systems and the role of trust 14

3.1 The security bootstrapping problem . 14

3.1.1 Security bootstrapping . 14

3.1.2 Creating •’s . 14

3.1.3 Naming entities, pseudonyms and entity invariance . 14

3.2 Limitations of cryptographic security transformations . 14

3.2.1 Trust-free security transformations . 14

3.2.2 Security bootstrapping without trust assumptions . 14

3.2.3 The quadratic blow-up problem . 15

3.3 Trust-based security transformations . 15

3.3.1 Roles of trusted entities . 15

3.3.2 Connection channels . 15

3.3.3 Key distribution . 16

3.4 Necessary and sufficient conditions for establishing secure channels or secret keys 16

4 Key management, certificates, and PKIs 17

4.1 Key management . 17

4.2 Protocols based on shared secret keys with trusted authority . 17

4.2.1 Star-shaped security set-up . 17

4.2.2 Trusted party relays messages . 17

4.2.3 Trusted party distributes session keys . 17

4.3 Public key certificates . 17

4.3.1 Certificates, the concept . 18

4.3.2 The semantics of certificates . 18

4.3.3 Interpretation of certificates in the •-calculus . 18

4.3.4 Using certificates . 19

4.3.5 Certificate chains . 20

4.4 A logical calculus for certificates and trust . 20

4.4.1 Introduction and notation . 20

4.4.2 Inferring the authenticity of a public key . 20

4.4.3 Recommendations . 20

4.4.4 Inferring trust . 21

4.5 Certification structures . 21

4.5.1 The certification graph . 21

4.5.2 Hierarchical certification . 21

4.5.3 Cross-certification . 21

4.5.4 Unstructured certification . 21

4.5.5 Retrieving certificates . 22

4.6 Public-key infrastructures (PKI) . 22

4.6.1 Concept . 22

4.6.2 Problems . 22

2

4.6.3 The naming problem . 22

4.6.4 Expiration and revocation . 22

4.6.5 PKI key recovery . 23

4.6.6 PKI trust models . 23

II David Basin 25

5 Introduction 25

5.1 What is information security? . 25

5.1.1 General definitions . 25

5.1.2 Security as policy compliance . 25

5.1.2.1 Examples of security properties . 25

5.1.2.2 Properties, policies and mechanisms . 25

5.1.2.3 Secure coprocessor as an example . 26

5.1.3 Security as risk minimization . 26

6 Networks 27

6.1 Introduction . 27

6.2 Application-managed security . 27

6.2.1 Advantages . 27

6.2.2 Problems . 27

6.3 Network-managed security . 28

6.3.1 Implementing lower-layer/midbox security . 28

6.4 Protecting the network . 28

6.4.1 Firewalls . 29

6.4.2 Example: securing a web server . 29

6.4.3 Insider attacks . 29

6.4.4 Intrusion detection systems . 30

7 Security protocols 31

7.1 Basic notations . 31

7.1.1 Security protocols . 31

7.1.2 The attacker . 31

7.1.3 Protocol objectives . 32

7.2 Problems and principles . 32

7.2.1 Examples of kinds of attack . 32

7.2.2 Principles for designing cryptographic protocols . 32

7.3 Formal methods . 33

7.3.1 Modeling protocols as a trace set . 33

7.4 Protocols example . 34

7.4.1 Kerberos . 34

7.4.1.1 Protocol overview . 34

7.4.1.2 Kerberos architecture . 35

7.4.1.3 Detailed view how the protocol operates . 35

7.4.1.4 Scalability of Kerberos . 36

7.4.1.5 Limitations of Kerberos IV . 36

7.4.2 SSL/TLS . 36

7.4.2.1 SSL handshake . 37

7.4.2.2 Solutions to phishing . 37

3

7.4.3 IPSec . 38

7.4.3.1 Protocol modes . 38

7.4.3.2 Headers . 38

7.4.3.3 Security policy database . 39

7.4.3.4 Aside: Perfect forward secrecy . 39

7.4.4 Conclusions . 39

8 Access control 40

8.1 Basic concepts . 40

8.1.1 AAA . 40

8.1.2 Policies and models . 40

8.2 Access control matrix model . 40

8.2.1 Access matrix data structures . 41

8.2.1.1 Access-control lists (ACL) . 42

8.2.1.2 Capability lists . 42

8.3 Role-based access control (RBAC) . 42

8.3.1 Advantages and disadvantages . 43

8.4 Discretionary access control (DAC) . 43

8.5 Mandatory access control . 43

8.5.1 Lattice . 44

8.5.2 Bella-LaPadula (BLP) model . 44

8.5.3 Other models . 44

8.5.3.1 Integrity models . 44

8.5.3.2 Biba integrity model . 45

8.5.3.3 Chinese wall model . 45

8.6 Limitations of access control models . 45

8.6.1 Interface models . 45

8.6.1.1 Issues with non-inference . 45

8.7 Monitor-based enforceability . 46

9 Privacy 47

9.1 Definitions . 47

9.1.1 Anonymity . 47

9.1.2 Mix networks . 48

9.1.2.1 Receipts . 48

9.1.2.2 Untraceable return address . 48

9.1.2.3 Summary of mix networks . 49

9.1.3 Crowds . 49

Part I

Ueli Maurer

1 Introduction and motivation

1.1 Basic definitions

1.1.1 Terminology

• Entity. Generally refers to a person or organization that acts, usually with its own will and directive, in the considered
context. Sometimes also used for technical systems such as computer systems or processes.

• User. An entity that is a person

• System. Component of an overall system, which is treated

• Channel. A system that transports messages between two designated endpoints. A channel might also be accessible
by other entities, e.g. an eavesdropper.

• Attacker or adversary. An entity acting maliciously, trying to obtain an illegitimate advantage or do some type of
harm to other entities.

• Threat. Any type of general risk of unwanted outside influence on a system. A first course distinction divides threats
into two types:

– Intentional threats. Threats origination from an intelligent adversary, often targeted at the weakest point of a
system.

– Accidental threats. Threats due to unforeseen events, system errors, or unexpected (but non-malicious) user
behavior. Example are power supply outages, fires, or (unintentional) software bugs.

• Attack. A malicious act by an attacker. A concrete implementation of an intentional threat. Examples include:

– Hacking into user accounts, or more generally, obtaining unauthorized access to a system.

– Unauthorized access to, modification, or deletion of data.

– Wire-tapping a phone line or LAN cable.

– Denial (or repudiation) of a performed transaction.

– Denial-of-service (DoS) attack.

• Vulnerability or weakness. Unintentional system features, due to design, specification, or implementation errors.
Vulnerabilities cause threats, namely that they are exploited by an attacker.

1.1.2 Basic security objectives

Often, the following three basic security goals (known as ”CIA“) are identified:

• Confidentiality or secrecy. Information should be accessible only to those authorized to see it. For example, the
goal of a network sniffing attack is to violate confidentiality.

• Integrity. Information should not be modified without appropriate authorisation. For example, the state of a database
or an on-line banking system should be changed only by legitimate users.

• Availability. Information and systems should be available when needed. For example, the goal of a denial-of-service
attack is to violate availability.

While useful as a guideline, this classification is too simplistic, as it does not cover a number of security goals discussed
below. Also, in the above classification, the term integrity is understood in a very genenral sense so as to include:

• Authenticity. Typically used in the sense that a message or other piece of information originates from the claimed
entity.

Some more advanced and more complex security objectives are:

1

• Non-repudiation. Impossibility to inappropriately deny a transaction or having sent a message.

• Auditability. Ability to reconstruct (certain aspects of) earlier states of a system.

• Accountability. Ability to hold an entity accountable for its action. This is related to both non-repudiation and
auditability.

• Privacy. There is no clear definition for the term privacy, but it basically refers to the security of personal information.
Privacy means that a person has appropriate control over which information on him or her is generated, stored,
processed, and deleted, and by whom.

• Anonymity. The identity of an entity is hidden. Anonymity is an aspect of privacy.

1.1.3 Classification of security measures

The following types of security measures and techniques can be distinguished:

• Technical.

– Cryptography

– Physical at macro-level: access to buildings, secured areas, shielding against electromagnetic radiation, etc.

– Physical at micro-level: tamper-resistant devices, smart-cards, etc.

– Biometric technology

– Processor technology

– Operating system security

• Organizational. Security policies, classification of information, defining responsabilties, etc.

• People-related. Selection, motivation, education, etc.

• Legal. Liability regulations, insurances, etc.

1.2 Digital objects

Definition 1.1: A digital object (DO) is a sequence of bits (also called a bitstring) which is independent of a physical
representation. A digital object can equivalently be interpreted as an integer number.

Examples include 10001010110010110, an e-mail, a program, a virus, or a digital signature. In contrast, a CD, a memory
chip or paper document are not digital objects.

Digital object differ radically from phyiscal objects, for instance:

• DO’s can be reproduced (copied) without cost.

• DO’s can be transported at the speed of light.

• DO’s can be destroyed without leaving traces (if only stored locally)

• DO’s cannot be revoked (once released)

• DO’s are stable and can be stored essentially for eternity.

• DO’s have well-defined properties.

1.2.1 The effect of digital objects in the real world

Digital objects are of interest only because of their potential effect in the real, physical world. In order to have an effect in
the real world, digital objects must be converted by an interface between the digital and the physical world. Some examples
of such interfaces are:

• A digital object can be represented as human-readable text, on paper or on a screen. This causes an effect in the real
world if the person reading the text makes his or her behavior depend on it.

• Execution of a DO as software on a computer, which interacts with the real world.

• A digital signature verified by a judge who decides that a person is liable (in the real world).

Statement 1.1 (Functionality/security tradeoff dilemma): The more functionality (and power) an interface from digital
objects to the physical world provides, the more devastating are potential consequences when malicious digital objects are
converted by the interface.

2

1.2.2 Distinguishing good and bad digital objects

Lemma 1.1: Deciding whether a program meets a given specification is in general undecidable.

Proof. The undecidable halting problem is a special case of deciding whether a program meets a given specification (namely,
to halt).

1.2.3 Some basic problems of the information economy

• Archiving digital objects. Archiving does not simply mean to store the digital objects and to provide a well-
defined set of access and search operations, but it actually means to archive the effect of the DO on the real world.
Consequently, this means that one also needs to archive the interface. For as simple as en example as a Word document,
this means that one needs to archive the Word program, the operation system, and ultimately, the hardware on which
the software can be installed and executed.

• Selling digital objects. How can one sell the effect of a digital object without showing it? This is a core problem of
the content business (music, video, etc.) and in preventing software piracy.

• Controlling digital objects. How can one control what others can do with a DO? For instance, how can one restrict
to which entities a digital object can be made available, say to protect privacy?

1.3 Three dilemmas

An obvious, but sometimes forgotten fact: Security can be defined only relative to a well-defined specification of the required
behavior of a system.

Dilemma 1.1 (Specification complexity dilemma): Typical security specifications are generally not precise, and precise
specifications generally do not capture the actual requirements.

Dilemma 1.2 (Functionality/security tradeoff dilemma): In some contexts, functionality and security requirements are
mutually exclusive. In other words, the set of admissible system behaviors is empty.

Dilemma 1.3 (Implementation dilemma): For some security specifications, a secure system is not implementable.

This last dilemma is a more general form of lemma 1.1 (deciding whether a digital object is good or bad might be undecidable).

1.4 Defining security

1.4.1 Two approaches to defining security

The following two approaches to making precise security definitions can be distinguished, depending on whether one focuses
on what the adversary can not achieve, or on what the honest entities can achieve.

• Attack-based security. Security is defined as the absence of (successful) attacks. In this approach one must consider
all conceivable attacks that an adversary could launch, and show that none of these attacks is successful.

• Constructive approach. This approach focuses on honest entities. Security means that the honest parties are
guaranteed to have a specified system/functionality available (e.g. a secure channel).

Security definitions can also be classified according to whether or not they involve statements about probabilities. Attack-
based definitions are often non-probabilistic, while constructive definitions involve probabilities.

1.4.2 Modularity and composability

A central paradigm in any constructive discipline is the decomposition of a complex system into simpler modules. This
paradigm is only useful if the composition of modules is well-defined and preserves the relevant properties. In information
security and cryptography, the modules are cryptographic schemes or protocols, and the composition must preserver the
security of the modules.

Surprisingly, for attack-based security definition, this composition property is often unclear, or does not hold, or at best is
highly non-trivial.

3

1.4.3 The constructive approach

Statement 1.2 (Resource): A resource is a system, with an interface to every involved entity, that behaves in a specified
manner. Resources model/specify both what the entities have available and what they want to achieve.

A resource can for example be thought of as modeling a trusted party that interacts with the entities in the specified manner.

Statement 1.3 (Constructive approach to security): The goal of a security mechanism or protocol π is to construct (or
securely realize) a resource S (the desired secure system) from a given resource R. A protocol π specifies for each (honest)
entity what it is supposed to do. This can be written as

R
π�� +3 S

Statement 1.4 ([Composability of constructive security): The constructive approach to security is composable, i.e. if
system T is securely realized from system S by protocol π and system U is securely realized from system T by protocol π′,
then U is securely realized from S by the composition of protocols π and π′.

S
π�� +3 T ∧ T

π′�� +3 U =⇒ S
π◦π′�� +3 U

1.5 High-level classification of security problems

We can distinguish three cases in term of which entities in the system S are assumed to be (potentially) dishonest.

1. Unilateral security. S is a system with a single interface (to the environment). One typically wants to protect the
system against a possibly hostile environment with which it is interacting.

Example: A network must be protected against the hostile Internet.

2. Fixed-adversary security. S is a system with several interfaces. The adversary controls one (or more) fixed interface.
The other entities are known or assumed to be honest (and execute a prescribed protocol).

This setting can be reduced to the problem of secure communication between any two honest entities because
pairwise communication between the honest entities allows them to implement any kind of system behavior. What
remains is to realize secure communication channels.

Example: SSL protocol.

3. Multilateral security. S is a system with several interfaces, where all entities are potentially dishonest. This
assumption is justified when the entities have conflicting interests. Nevertheless they want to realize a system S, no
matter who is cheating. The special case of only two entities can be called bilateral security.

Examples: Certified e-mail, or voting.

1.5.1 Unilateral security

In order to define unilateral security, one must define two things:

1. System specification. How is the system supposed to behave?

2. Adversary specification. What types of adversaries must the system be protected against, i.e., what level of
maliciousness must be tolerated.

In comparison, to define correctness of a system we need to define two things:

1. System specification. How is the system supposed to behave?

2. Environment specification. In which types of environments must the system meet the specification, i.e. what kinds
of environments must be tolerated?

Therefore, it naturally follows:

Statement 1.5: System correctness and unilateral security are conceptually equivalent.

4

1.5.2 Multilateral security

Statement 1.6: Multilateral security can be specified by a resource (or trusted party) S. Achieving multilateral security
means securely emulating S.

Examples of multilateral security include the following:

• Millionaires’ problem. Two millionaires want to find out who is richer without having to tell each other how rich they
are.

• Software piracy problem.

• Database security. How can a user protect itself against a malicious database, without loosing functionality.

• On-line actions.

• E-voting.

5

2 Cryptography - basic concepts

2.1 Defining security of cryptographic systems and functions

In order to define security, we need to specify at least the following parameters for the adversary:

• Computing power.

– Infinite computing power. A system secure under this assumption is called information-theoretically secure.

– Bounded computing power. One specifies an upper bound on the computing power, in some model of com-
putation and considers the time required to break the system, using the fastest algorithm. A system secure under
a reasonable assumption on the adversary’s computing power is called computationally secure.

Obviously, information-theoretic security is more desirable, but it is usually more difficulty to achieve and the practi-
cality of such systems is usually quite limited.

• Memory capacity. Usually assumed to be unbounded.

• Side information. An adversary may be able to perform certain attacks, for instance choose a plaintext and obtain
the corresponding ciphertext (for the active secret key).

• Corruption capability. In a multilateral security context one can specify which entities the adversary can corrupt,
i.e., can make misbehave in a manner controlled by the adversary.

Regarding side information, there is the following important principle:

Statement 2.1 (Kerckhoffs’ principle): A cryptographic system should be designed so as to be secure when the adversary
cryptanalyst knows all details of the system, except for the values explicitly declared to be secret (e.g. secret keys).

2.2 Keyless cryptographic functions

2.2.1 One-way functions

Definition 2.1 (One-way functions): A one-way function is an efficiently computable function f from a domain A to a
co-domain B, f : A → B, such that for every efficient (possibly probabilistic) algorithm G taking an input from B and
producing an output in A, and for x ∈ A selected uniformly at random

P (f(G(f(x))) = f(x))

is negligible.

Remark 2.1: If there are many preimages of f(x), the algorithm G is only required to find one of them. This is captured
in definition 2.1 by the extra f(·) on both sides of the equality sign.

Remark 2.2: Typical one-way functions are not bijective.

2.2.2 Collision-resistant hash functions

Definition 2.2 (Hash function): A hash function is an efficiently computable function h : D → R where |D| � |R|, typically
D = {0, 1}∗ and R = {0, 1}k for some suitable k. A hash function can have a parameter c from some set C, selecting a
function hc from a class {hc | c ∈ C} of functions.

Definition 2.3 (Collision resistance): A hash function class {hc | c ∈ C} with domain D is collision-resistant if for every
efficient algorithm G taking an input c ∈ C and producing a pair (x, x′) of values in D,

P (hc(x) = hc(x
′))

is negligible for c ∈ C selected uniformly at random.

2.3 Randomness and pseudo-randomness

2.3.1 Distinguishers

The distinguisher concept is generally defined for systems, but here we only consider the special case of the distinction of
two random variables S0 and S1 (from some set S) by a distinguisher D that is given access to one of them and outputs a
(decision) bit. Let D(Si) be the random variable corresponding to the decision bit when D get Si.

6

Definition 2.4: The advantage of a distinguisher D in distinguishing S0 and S1, denoted ∆D(S0, S1), is defined as

∆D(S0, S1) :=
∣∣∣P (D(S0) = 1)− P (D(S1) = 1)

∣∣∣
The advantage of a class D of distinguishers in distinguishing S0 and S1, denoted ∆D(S0, S1), is

∆D(S0, S1) := max
D∈D

∆D(S0, S1)

Lemma 2.1: If B is an unbiased random bit, then

∆D(S0, S1) = 2 ·
∣∣∣P (D(SB) = B)− 1

2

∣∣∣
Lemma 2.2 (Triangle equality for the distinguishing advantage): For three random variables R, S and T , and any distin-
guisher D,

∆D(R, T) ≤ ∆D(R,S) + ∆D(S, T)

2.3.2 Pseudo-randomness

For some reasonable notion of efficiency, let E denote the class of efficient distinguishers. Let Uk denote a uniform random
bitstring of length k.

Definition 2.5 (Pseudo-randomness): An m-bit random variable X is called pseudo-random, if it is computationally indis-
tinguishable from a uniform random m-bit string, i.e. if ∆E(Um, X) is negligible.

Definition 2.6 (Pseudo-random generator): A function g : {0, 1}k → {0, 1}m for m > k is called a pseudo-random generator
(PRG) if ∆E(UM , g(Uk)) is negligible.

Remark 2.3: Pseudo-randomness appears to be a much stronger requirement than one-wayness. A function is one-way, if
the entire input cannot efficiently computed, but it is acceptable that one can compute a large part of the input of a one-way
function. In contrast, the definition of a PRG requires that one cannot see the slightest difference between two settings. One
can easily see, that a PRG is actually a one-way function. The converse is trivially false.

Definition 2.7 (Pseudo-random bit generator): A pseudo-random bit generator (PRBG) is an efficient algorithm which
takes as input a seed (or key) value of fixed length, and output an (a priori) unbounded sequence of bits, such that the
output is computationally indistinguishable from a truly random bit sequence.

2.4 Secrecy, authenticity, and their abstraction

2.4.1 Describing channels

We can describe a communication channel from A to B (with certain security properties) in two different, but equivalent
ways.

• By properties such as secrecy, authenticity, availability, single-use vs. multi-use, etc.

• As a system with three interfaces for entities A, B, and E, where E is the adversary. This description is the basis
for a constructive approach to security. In such a description, properties like secrecy, authenticity and availability are
implicit.

2.4.2 Secrecy and authenticity

A communication channel is a system which transports a message (from a certain message domain) from a sender A to a
receiver B. The adversary E is involved as a third party and, depending on the type of channel, can interact with it in
certain ways.

Because a channel has two endpoints, an input and an output, there are two fundamental security properties a channel can
provide:

• Authenticity. The input of the channel is accessible exclusively to the sender A. No other entity can send a message
on the channel. Authenticity is a property considered from the receiver’s viewpoint.

• Secrecy or confidentiality. The output of a channel is accessible exclusively to the receiver B. No other entity can
read a message sent over the channel. Secrecy is a property considered from the sender’s viewpoint.

7

2.4.3 Availability

In the model of an insecure communication channel, the adversary can always block the communication. The availability of
the channel is not (and cannot be) guaranteed. This availability aspect is orthogonal to the secrecy and authenticity aspects,
and we therefore ignore availability as a security requirement.

2.4.4 A symbolism for channels and keys

We introduce the following symbols for insecure channels

A // B insecure channel from A to B
A oo B insecure channel from B to A

Security properties are modeled by the symbol • which stands for exclusiveness of a channel input or output. Therefore,
three other types of channels from A to B exists:

A //• B channel with secrecy from A to B
A • // B channel with authenticity from A to B
A • //• B secure channel from A to B (secrecy and authenticity)

For shared keys, we introduce the following notion:

A • • B Secret key shared by A and B. More precisely, both A and B know that no other entity knows the
secret key

A • B One-sided key: A knows that at most B knows the key, but B does not know who else holds the key.

The symbol A • means that B knows or believes that the key is secret for A and B, but from A’s viewpoint it is
possible that other entities know the key or that B does not even know the key.

2.4.5 Timing aspects

A parameter above a channel symbol indicates the time when this channel is available. For instance,
t // refers to a

channel that is available at time t. We can also model channels with delay where the message is sent at t1, but only received

at t2 (with t2 > t1). Such a channel is denoted as follows:
t1 t2 // .

Similarly, we can add timing information to keys, e.g.
t

. Unlike a communication channel available at some time

t, a shared secret key is persistent in time, i.e., A • t • B implies A • t′ • B for any t′ > t (unless the key is leaked of
course).

2.4.6 Trivial security transformation

The following transformation require no cryptography, only common sense. However, they illustrate how this abstract
formalism can be used to transform channels.

Security properties obviously always can be dropped:

A • t //• B �� +3 A • t // B

Messages can be forwarded:

A
t1 t2 // B

B
t3 t4 // C
t3 ≥ t2

 �� +3 A
t1 t4 // C

2.4.7 Key-transport security transformations

Using a secure channel, one can transport a secret key:

A • t1 t2 //• B �� +3 A • t2 • B

This transformation can also be achieved when the channel does not provide authenticity:

A
t1 t2 //• B �� +3 A

t2 • B

8

However, the same transformation without secrecy, i.e. only authenticity, does not work:

A • t1 t2 // B ((((�� +3 A • t2
B

2.5 Symmetric cryptosystems

2.5.1 Concept and definition

The model of a (deterministic) symmetric cryptosystem, also called a cipher, is shown in figure 1.

Figure 1: Symmetric cryptosystem (cipher)

Symmetric cryptosystem (cipher)

secure channel

Alice Bob

plaintext

ciphertext

plaintext

secret keysecret key K K

adversary

encryption decryption
M M

C

The message M , often called plaintext, is encrypted by a sender Alice, using a secret key K, resulting in the ciphertext C.
The encryption transformation can be probabilistic, i.e., involve fresh random bits for each message to be encrypted. More
formally:

Definition 2.8 (Cipher, symmetric cryptosystem): A cipher for message space M, ciphertext space C and key space K
is a pair of functions; an encryption function E : M × S → C and a decryption function D : C × S → M such that
D(E(m, k), k) = m for all k ∈ K and m ∈M. A symmetric cryptosystem is a possibly probabilistic cipher with randomness
space R, i.e., a pair of functions E : M× S × R → C and D : C × S → M such that D(E(m, k, r), k) = m for all k ∈ K,
m ∈M and r ∈ R.

2.5.2 Types of symmetric cryptosystems

Without loss of generality, every practical cryptosystem can be modeled as a finite automaton that processes the message in
units of a certain size and generates, per unit of plaintext, one unit of ciphertext. The ith ciphertext unit is a function of
the state at time i− 1 and the ith message unit. Three special instantiations of this general principle are used in general:

• Block cipher. A block cipher is a stateless encryption function where plaintext and ciphertext are n-bit strings. When
used in the natural mode (called electronic codebook mode), a message is encrypted by cutting it into n-bit blocks and
encrypting each block separately.

• Additive stream cipher. An additive stream cipher is obtained from the one-time pad by replacing the random
key by the output of a pseudo-random generator, which is added modulo 2 (XOR) to the plaintext. In contrast to a
block cipher, a stream cipher is stateful (the state of the PRG). But the state evolves autonomously, independent of
the plaintext.

• Self-synchronizing stream cipher (SSSC). Encryption is bit-by-bit. The state consists of the m most recent
ciphertext bits. The ith bit is encrypted by adding modulo 2 a bit computed by some function from the state and the
secret key. Decryption is self-synchronizing, i.e., one can start decryption at any intermediate point of a ciphertext,
without need for context information. After m ciphertext bits have been processed, decryption works properly. The
so-called cipher feedback mode is a possible implementation of an SSSC.

2.5.3 Does encryption provide authenticity?

Näıvely viewed, encryption provides both secrecy and authenticity. The latter is provided because an attacker cannot insert
or replace messages. This seems true because only the sender and receiver know the secret key and can hence compute a

9

valid ciphertext.

However, this reasoning is false in general for two reasons:

• If the cipher is non-expanding and the plaintext contains no redundancy, then every ciphertext is valid and an adversary
could insert any ciphertext. He might not know what the message is, but he can fool the receiver into believing that
the message came from the legitimate sender.

• Even a very secure cipher might not prevent modifications of the ciphertext, resulting in a certain predictable modifi-
cation of the plaintext. An example is the one-time pad, where flipping the ith bit in the ciphertext results in a flipped
bit at position i in the plaintext.

In typical applications one does not assume that encryption provides authenticity and instead uses an explicit mechanism
for authentication, called a message authentication code, MAC for short.

2.5.4 Interpretation as security transformations

The basic security transformation provided by symmetric ciphers is the following

A
t1 • B

A
t2 t3 // B
t2 ≥ t1

 �� +3 A
t2 t3 //• B

A
t1 • B

A • t2 t3 // B
t2 ≥ t1

 �� +3 A • t2 t3 //• B

2.6 Message authentication codes (MAC)

2.6.1 Concept and definition

Definition 2.9 (Message authentication codes): A message authentication code (MAC) for message spaceM, key space K,
and tag space T is a function f :M×K → T such that the following security condition holds:

MAC security definition: Let k be chosen uniformly from K and consider an oracle M→ T computing the tag f(m, k)
for an input message m. There exists no efficient alogrithm with access to the oracle, which outputs with non-negligible
probability a message m′ different from all messages asked to the oracle, as well as the corresponding tag t = f(m′, k).

As a security transformation, a MAC scheme achieves the following two transformations:

A • t1
B

A
t2 t3 // B
t2 ≥ t1

 �� +3 A • t2 t3 // B

A • t1
B

A
t2 t3 //• B
t2 ≥ t1

 �� +3 A • t2 t3 //• B

2.6.2 Limitations of MACs

In many applications a stronger form of authentication, namely the ability to prove to a another party (e.g. a judge) that a
certain entity sent a message. This is called non-repudiation, and is not achieved by MACs. This is obvious, as not only the
sender, but also the receiver (who knows the secret key) could have generated the message tag.

10

2.7 Combining encryption and message authentication

Both the symmetric cryptosystem and the MAC scheme require a secret key, but the key on the left side of a transformation
is ”consumed“ when the transformation is applied. However, a pseudo-random generator (PRG) can duplicate the shared
secret key by expanding the given key into a key of sufficient length:

A • t • B �� +3

{
A • t • B
A • t • B

This step can be repeated as often as needed.

Using only a two-sided shared secret key and insecure channels, there are two possibilities to achieve a secure channel:

• Encrypt-then-MAC. Encrypt the message and then apply a MAC to the ciphertext.

A • t1
B

A
t2 t3 // B
t2 ≥ t1

 �� +3 A • t2 t3 // B

A
t1 • B

A • t2 t3 // B
t2 ≥ t1

 �� +3 A • t2 t3 //• B

• MAC-then-encrypt. MAC the message and then encrypt the message-MAC pair.

A
t1 • B

A
t2 t3 // B
t2 ≥ t1

 �� +3 A
t2 t3 //• B

A • t1
B

A
t2 t3 //• B
t2 ≥ t1

 �� +3 A • t2 t3 //• B

Note that the order in which the security transformations are applied is reversed compared to the order in which the
operations are performed.

2.8 Public-key cryptography

2.8.1 Concept and definition

The concept of public-key cryptosystems is shown in figure 2. A user generates a key pair consisting of a secret key sb and
the corresponding public key pb, which he makes public. There is an encryption operations, making use of the public key by
which any entity can encrypt a message. However, only the owner of the private key can decrypt the ciphertext.

Definition 2.10 (Public-key cryptosystem): A public-key cryptosystem (PKC) consists of three efficient algorithms:

• The key generator is a probabilistic algorithm which generates a key pair (consisting of an encryption key and a
decryption key) according to a certain probability distribution.

• The encryption algorithm takes as inputs an encryption key an d a plaintext and computes the ciphertext. Encryption
can be probabilistic.

• The decryption algorithm takes as inputs a decryption key and a ciphertext and computes the plaintext.

The following conditions must be satisfied:

• Decipherability. For every encryption/decryption key pair the decryption transformation must be the inverse of the
encryption transformation.

• Security. It must be computationally infeasible to compute ”useful“ information about the plaintext for a given
ciphertext without knowledge of the secret key.

11

Figure 2: Public-key cryptosystem

Public-key cryptosystem

p
B

key
generator

public key

adversary

plaintext m

Bob

secret key

c

p’

s
B

encryption decryption

p
B

B

plaintext m

Alice

ciphertext c

2.8.2 Interpretation as a security transformation

The basic security transformation achieved by a PKC is the following:

A • t1 t2 // B

A oo t3 t4
B

t3 > t2

 �� +3 A •oo t4 t3
B

The public key is sent over the authenticated channel and the message is encrypted by B (using the public key) and sent
over an insecure channel.

If the channel from B to A also provides authenticity, then the resulting channel is secure:

A • t1 t2 // B

A oo t3 t4 • B
t3 > t2

 �� +3 A •oo t4 t3 • B

2.8.3 Secret-key establishment using public-key encryption

The typical use of a PKC is not for encrypting actual application messages, but for key management where the message is
a session key. The corresponding transformations are the following:

A • t1 t2 // B

A oo t3 t4
B

t3 > t2

 �� +3 A • t4
B

A • t1 t2 // B

A oo t3 t4 • B
t3 > t2

 �� +3 A • t4 • B

2.8.4 The Diffie-Hellman key-agreement protocol

The Diffie-Hellman key-agreement (or key-distribution) protocol is based on the discrete logarithm problem. This problem is
conjectured to be generally computationally infeasible, i.e. exponentiation modulo a large prime is a (conjectured) one-way
function. The protocol uses only an authenticated channel to generate a shared, secret key.

This works as follows: A large prime p and a basis g are chosen as public parameters. Then, both Alice and Bob choose
a number at random from 0, . . . , p− 2, say xA and xB respectively. They exponentiate the base by there secret parameter
modulo p and send the result, yA and yB , to the other person. Now, both parties exponentiate what they got by their secret
parameter (again, modulo p), and thereby get the secret key:

kAB ≡p yxA

B ≡p (gxB)xA ≡ gxAxB ≡ kBA

12

2.8.5 The RSA public/key cryptosystem

Theorem 2.1: Let G be some finite group (with neutral element 1), and let e ∈ Z be a given exponent relatively prime to
|G| (i.e. gcd(e, |G|) = 1). The (unique) e-th root of y ∈ G, namely x ∈ G satisfying xe = y, can be computed according to

x = yd

where d is the multiplicative inverse of e modulo |G|, i.e.

d ≡|G| e−1

When |G| is known, then d can be computed efficiently using the extended Euclidean algorithm. No general method is known
for computing the e-th root in a group of unknown order. This fact can be exploited to define a public-key cryptosystem.

The protocol works as follows:

Alice insecure channel Bob
Generate primes p and q
n = p · q
ϕ(n) = (p− 1)(q − 1)
select e

d := e−1(modϕ(n))
n,e−−−−−→ plaintext

m ∈ {1, . . . , n− 1}
ciphertext

m := cd(modn)
c←−−−−−− c := me(modn)

2.9 Digital signatures

2.9.1 Concept and definition

Definition 2.11 (Digital signature scheme): A digital signature scheme (DSS) consists of three efficient algorithms:

• The key generator is a probabilistic algorithm which generates a key pair, consisting of a signing key (or secret key or
private key) and a signature verification key *or public key), according to a certain probability distribution.

• The signing algorithm takes as input a signing key and a message and computes the signature for the message. Signing
can be probabilistic.

• The signature verification algorithm takes as inputs a signature verification key, a message, and a signature, and outputs
a bit (which can be interpreted as ”accept“ or ”reject“).

The following conditions must be satisfied:

• Correctness. For every signing/verification key pair the verification algorithm outputs ”accept“ for a signature computed
by the signing algorithm.

• Security. Without access to the signing key it must be computationally infeasible to compute a signature for a message.

2.9.2 Interpretation as security transformation

A DSS can be used to preserve authenticity in time in the same way as a symmetric encryption scheme can preserve secrecy
in time.

As before, there are two variants of the actual transformation:

A • t1 t2 // B

A
t3 t4 // B
t4 ≥ t2

 �� +3 A • t3 t4 // B

A • t1 t2 // B

A
t3 t4 //• B
t4 ≥ t2

 �� +3 A • t3 t4 //• B

13

3 Security in distributed systems and the role of trust

3.1 The security bootstrapping problem

3.1.1 Security bootstrapping

Security symbols (•) cannot be created by cryptography, they must be generated by physical means. One can distinguish
two phases (which can overlap) of security bootstrapping:

• Set-up phase. The channels or keys with security symbols are generated by physical means.

• Communication phase. Only insecure channels such as the Internet are available. They are transformed into
channels with the desired security properties.

3.1.2 Creating •’s

There are several possibilities to generate •’s by physical means:

• People can meat physically and exchange security parameters.

• A person can recognize another person’s voice in a telephone conversation and hence authenticate a communication
channel.

• A trusted courier can transport a secret key.

3.1.3 Naming entities, pseudonyms and entity invariance

A security symbol always belongs to an entity as specified (from another entities viewpoint) by some parameter. For instance,
an entity could be a person. However, an entity can also be specified by other parameters like a pseudonym, which does not
uniquely identify the person in a physical sense, but which for the application at hand is nevertheless sufficient. The use of
”•“ does not imply that the person is physically identified, only that in the given context it is the ”right“ person.

Taking this one step further, the entity of interest could also be a computer, known only by some parameter, but for which
it is not even known where on the Internet it is located. The parameter could for instance be the session key agreed upon
when setting up the session. In other words, it makes perfect sense for an entity B to assign a security symbol to a channel
from C to B, even if B knows nothing about C other than its existence.

In such a context the concept of authenticity is sometimes also called entity invariance or sender invariance.

3.2 Limitations of cryptographic security transformations

3.2.1 Trust-free security transformations

Definition 3.1 (Cryptographic and trust-free security transformations): Cryptographic security transformations are those
realize by cryptographic systems. We use the term trust-free security transformations to refer to the trivial transformations,
the key-transport transformations, and the cryptographic security transformations.

It is easy to see that cryptographic security transformations can move security symbols ”•“ from one channel to another,
but they remain attached to the corresponding entities. This can be summarized in the following observation:

Observation 3.1: There exists no trust-free security transformation which can either

1. generate a ”•“,

2. move a ”•“ from one entity to another, or

3. move a ”•“ from one channel to another channel for which not both end-points are the same

even if insecure channels are freely available.

3.2.2 Security bootstrapping without trust assumptions

Motivated by the availability of the Internet as an insecure communication medium, we make the following simplifying
assumption:

14

Assumption 3.1 (Assumption of permanent connections): Insecure channels // are available at any time between
any two entities.

Proposition 3.1: Under the assumption of permanent connections, a secure channel between A and B after time t0,

A •oo t //• B for t ≥ t0, can be obtained under the following two conditions:

1. There exists, at some time t1 < t0, a channel or key with a •attached to A: A •oo t1
B, A • t1 // B, or A • t1

B.

2. There exists, at some time t2 < t0, a channel or key with a •attached to B: A oo t1 • B, A
t1 //• B, or A

t1 • B.

Under the additional assumption that only trust-free security transformations are available, these two conditions are also
necessary.

3.2.3 The quadratic blow-up problem

In a large distributed system like the Internet it is typically required that any arbitrary two entities A and B can communicate
securely, A •oo //• B, at any time.

Statement 3.1 (The quadratic blow-up problem): If only trust-free security transformations are available, then, to be
prepared for secure communication between any two entities, the number of security symbols ”•“ that must be established
in the set-up phase is quadratic in the number of entities. In particular, the number of ”•“ to be created by each user is
linear in the number of entities.

Obviously, this problem must be solved for security on the Internet to scale. This is the main purpose of using trust, i.e.,
entities that are trusted by some other entities to perform certain tasks correctly.

3.3 Trust-based security transformations

3.3.1 Roles of trusted entities

Trust requirements should be minimized. Two important issues to be to be addressed in the design of protocols are:

1. Who needs to trust which entity? For instance, is an entity trusted only by some entities or by all entities
participating in a system?

2. Involvment of the trusted entity: One can distinguish three types:

• In-line: The communication between A and B is relayed through T .

• On-line: The session between A and B is set up by T , but the actual communication is directly between A and
B.

• Off-line: T is not involved in the setting up a session between A and B. In fact, T need not know that A and B
may intend to establish a session.

3.3.2 Connection channels

A trusted entity can simply forward messages, which results in the following security transformation:

A • t1 t2 // T

T • t3 t4 // B
t3 > t2

B trusts T


�� +3 A • t1 t4 // B

A few details about this transformation:

• Obviously, the time t3 when the second channel is invoked must be after the message is received on the first channel.
This limitation will be solved by public-key certification.

• The message on the second channel is related to the message on the first channel (same content). That means, T needs
to be involved in-line. This also is solved by public-key certification.

• B must trust T to make correct statements about which entity the message originates from. This includes that T must
properly authenticate the source. B relies on T ’s judgement.

15

• Note that A need not to trust T . Actually, if B’s trust in T were not justified, A could not prevent B from accepting
a fasle message from T .

Similarly, the following transformation, that does not appear to be of practical interest, is possible:

A
t1 t2 //• T

T
t3 t4 //• B
t3 > t2

A trusts T


�� +3 A

t1 t4 //• B

The above two transformations can be combined, where now both A and B must trust T :

A • t1 t2 //• T

T • t3 t4 //• B
t3 > t2

A trusts T
B trusts T


�� +3 A • t1 t4 //• B

3.3.3 Key distribution

We consider one more trust-based transformation by which A and B can delegate the generation of a secret key for them to
T , provided there exists secure channels from T to A and from T to B.

T • t1 //• A

T • t2 //• B
t3 ≥ max(t1, t2)
A trusts T
B trusts T


�� +3 A • t3 • B

Note that both A and B must trust T to generate a fresh random key KAB , and not to leak this key to any other entity.

3.4 Necessary and sufficient conditions for establishing secure channels or secret keys

In the sequel, let the symbol • denote any of the three primitives • // , •oo , • , and let the symbol
• ◦ denote any of the six primitives • // , •oo , • , • //• , •oo • , • • . In other words, ”◦“

can either be replaced by a •or dropped.

Observation 3.2: There exists no trust-based security transformation which can either

1. generate a •,

2. move a •from one entity to another, or

3. move a •from a primitive A • ◦ T to a primitive A ◦ B unless two conditions are satisfied: (1) there exists
a channel T • ◦ B and (2) B trusts T .

Proposition 3.2: Under the assumption of permanent connections, any primitive A • t
B for t ≥ t0 can be derived

from a given scenario if there exists a path of primitives • ◦ from A to B such that:

1. Every primitive is available at some time before t0 and has a security symbol ”•“ on the endpoint on A’s side.

2. B trusts every entity on the path.

Under the additional assumption that only trust-free and trust-based security transformation are available, these two condi-

tions are also necessary for deriving any of the primitives A • t
B.

The following proposition is a direct consequence of proposition 3.2:

Proposition 3.3: Under the assumption of permanent connections, a secure channel between A and B after time t0

(A •oo t //• B for t ≥ t0) or a shared secret key A • t0 • can be obtained only if and only if there exist two paths according
to proposition 3.2, one from A to be, and, symmetrically, one from B to A.

It is important to note that the two paths can be disjoint. In other words, it is not necessary that there exists an entity
trusted by both A and B.

16

4 Key management, certificates, and PKIs

4.1 Key management

Cryptographic keys are a way to preserve security properties ”•“ over time and can be used to achieve many other security
goals. Establishing and managing cryptographic keys is called key management.

For the two types of cryptographic keys - (symmetric) secret keys and (asymmetric) public keys, there are two basic key
management problems:

• (Symmetric) key agreement. Two (or more) entities A and B wish to establish a common shared secret key, which
is typically used for encrypting and authenticating the communication within a session.

• Public-key authentication. An entity B wants to obtain the authentic public key of another entity A. There are
two types of public keys, for public-key encryption and for digital signature verification.

The key agreement problem is often solved by reducing it to the public-key authentication problem. The public-key authen-
tication problem is therefore of more fundamental interest than direct solutions to the key agreement problem.

4.2 Protocols based on shared secret keys with trusted authority

4.2.1 Star-shaped security set-up

We consider a central authority T trusted by all entities. This makes sense in a centralized organisation such as a company,
but not necessarily in a heterogeneous environment. We assume that in the set-up phase, every entity, say A, establishes a

secure channel T • t //• A with T (for some t) and exchanges a shared secret key KAT over this channel, resulting in

A • t • T

for some t. This can for instance be achieved by a physical visit. No security symbols ”•“ between entities must be established,
solving the quadratic blow-up problem.

4.2.2 Trusted party relays messages

In a star-shaped topology of shared secret keys, the perhaps most natural way to achieve a secure channel between any two
entities, say A and B, is for T to relay messages between A and B.

The main disadvantage of such a simple relay protocol is that T is in-line and therefore constitutes a communication
bottleneck.

4.2.3 Trusted party distributes session keys

Instead of acting in-line, T can be used on-line to establish a shared secret key between A and B. There are several different
variants for such a session key establishment.

First of all, we can use the protocol described above in section 4.2.2. A could generate a secret key KAB , then sending it
with the protocol described to B. From then on, the two entities can communicate without the help of T .

However, most protocols that make use of a trusted entity T to set up a session key actually let T (rather than A) generate
a session key. There are two natural variants for this. In both variants, A initiates the session by informing T that it wants
to establish a session with B, and T then generates a session key KAB and encrypts it with both keys KAT and KBT . In one
variant, T sends both ciphertext to A, whereas in the other case T sends the ciphertext for B directly to B. Both variants
are shown in figure 3

4.3 Public key certificates

The key management protocols of section 4.2 all suffer from the following three basic drawbacks:

• The trusted entity T must be on-line when A and B establish a session. In particular, T must be aware of the fact
that A contacts B.

• Both entities A and B must trust T , i.e., there is a need for a commonly trusted entity.

• T could read the messages exchanged between A and B, without possibility for A and B to notice this.

Public-key certificates can solve all these problems.

17

T distributes session key

ID
B

E (m)
KAB

E (K)
KAT AB

E (K)
KBT AB

E (K)
KBT AB

A B

T

ID
B

E (m)
KAB

E (K)
KBT AB

E (K)
KAT AB

A B

T

z

zz

z

Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�
�
�
�
�

�
�
�
��>

�
�

�
�

�
�

�
�

�
��=

� -A B

T

t2
t1

t3

t4

t5

Figure 3: Two variants of a protocol for session key distribution by a trusted party T .

4.3.1 Certificates, the concept

Definition 4.1 (Certificate): Informally, a certificate is a digitally signed statement by an entity C, often called a certification
authority, stating that a certain public key PA ”belongs to“ an entity A (with name IDA). Such a certificate will be denoted
by CertC,A.

More concretely, a certificate consists of two parts: a data part, and the signature on the data part. The data part consists
at least of a public key, the name of the entity for which the certificate is issued, the name of the entity who issued the
certificate and possibly further parameters like an expiration date, the description of a context in which the certificate can
be applied, the policy applied by the issuing entity, etc.

A certificate CertC,A issued by C is useful for an entity, say B, if the following two conditions are satisfied:

1. B holds an authenticated copy of C’s public key, which is needed to verify the signature of the certificate.

2. B trusts C to properly authenticate entities for which it issues certificates and to make correct statements (at least in
the context of certification).

At first, certificates may appear to be a useless mechanism since one reduces the problem of authenticating a public key
(A’s) to the same problem for C’s public key, with an additional trust requirement. However, in practice it may be easier to
authenticate the public key of C.

4.3.2 The semantics of certificates

The purpose of a certificate is to ”bind“ a public key to a particular entity. Possible meanings of a certificate CertC,A include
the following:

• A claimed (towards T) that PA is her public key.

• Like the above, but T also confirms it verified that A knows the corresponding secret key.

• Non-repudiation: A commits herself to be liable for statements (e.g. a contract) of certain types signed relative to her
signature public key.

4.3.3 Interpretation of certificates in the •-calculus

We recall the following trust-based security transformation from section 3.3.2:

A
t1 t2 //• T

T
t3 t4 //• B
t3 > t2

A trusts T


�� +3 A

t1 t4 //• B

which allows a trusted entity T to transfer an authenticated message from a sender A to a recipient B who do not share any
security symbols initially. However, there are two major drawbacks:

• The time condition t3 > t2 implies that the order in which the authenticated channels are established during the set-up
phase matters.

• The message on the two channels A
t1 t2 //• T and T

t3 t4 //• B are related, which implies that T must be on-line.

18

Both problems are solved by public-key certification. The goal is to obtain an authenticated channel from A to B, i.e.

A • t1 t4 // B.

Public-key certification: channels

}

}

�
�
�
�
�

�
�
�
�
�
�
�
�
��3 Z

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~

-

�
�

�
�

�
�

�
�

�
�

�
�

�
��+

�
A B

T

t4

t5

t1 t2

t3

Figure 4: Formal interpretation of public key certification: the involved channels.

Figure 4 shows the involved channels. First, two insecure channels can be connected:

T
t3 // A

A
t4 // B

 �� +3 T
t3 t4 // B

The digital signature transformation allows to transfer the authenticity of the channel T • t2 // B to the channel T
t3 t4 // B

available at a later time.

T • t2 // B

T
t3 t4 // B
t4 > t2

 �� +3 T • t3 t4 // B

The message sent over the (virtual) channel T • t2 // B is T ’s signature public key, and the security symbol ”•“ on the

channel T
t3 t4 // B is obtained by signing the transmitted message. Here, the message sent over the channel T • t3 t4 // B

is A’s public key, or more precisely, the data part of the certificate.

If B trusts T and t3 > t1, we can now apply the following transformation:

A • t1 // T

T • t3 t4 // B
t3 > t1

B trusts T


�� +3 A • t1 t4 // B

Note that in this case there is no dependence of the messages sent over the two channels A • t1 // T and T • t2 // B. This
is a major advantage of public-key certification.

4.3.4 Using certificates

Since there are two types of public keys, there are (at least) two types of certificates. For a signature certificate one can
apply the transformation

A • t1 t4 // B

A
t4 // B

 �� +3 A • t4 // B

to send an authenticated message (at the actual connection time t4). Note that the second channel is used to transmit two
messages, the certificate and the signed message for B.

For an encryption certificate, one can apply the transformation

A • t1 t4 // B

A oo t4
B

 �� +3 A •oo t4
B

to send a confidential message from B to A.

19

4.3.5 Certificate chains

When given a certificate CertC,A for entity A issued by entity C, we need to authenticate C’s public key. Of course, we can
do so with yet another certificate CertC,D, and so on. This leads to certificate chains.

Definition 4.2 (certificate chain): A certificate chain of length k from an entity E to an enitty A is a list of certificates[
CertE,D1 ,CertD1,D2 , . . . ,CertDk−2,Dk−1

,CertDk−1,A

]
for some intermediate entities D1, . . . , Dk−1, where all but possibly the last certificates are signature certificates.

For suc ha certificate chain to be useful for an entity B to authenticate the public key of an entity A, two conditions must
be satisfied:

• B must have an authenticated copy of the first entity E’s public key.

• B must trust all entities on the chain, i. E,D1, . . . , Dk−1, but not A.

Note that in the set-up phase, one needs an authenticated channel • // from any entity in the chain to the previous
entity.

4.4 A logical calculus for certificates and trust

4.4.1 Introduction and notation

We develop a calculus that can be used by A to reason about the authenticity of public keys and about trust. A’s view
consists of the following types of evidence:

• AutA,X : A believes to hold an authenticated copy of X’s public key. This believe can either be first-hand knowledge,
or it can be derived within the calculus, based on other evidence.

• CertX,Y : A certificate for Y carrying the issuer identity X.

• TrustA,X,i: A trusts X of level i. This can either be based on first-hand knowledge or it can be derived within the
calculus.

• RecX,Y,i: A recommendation for Y of level i, carrying the issuer identity X.

Trust of level 1 is the usual type of trust. higher levels are requred for issuing recommendations. There is also a graphical
notation, where AutA,B and CertA,B are represented by a solid arrow from A to B, and TrustA,B,i and RecA,B,i are drawn
using a dashed arrow, labeled with i.

4.4.2 Inferring the authenticity of a public key

Definition 4.3: The general inference rule for deriving the authenticity of a public key is

∀X,Y, i ≥ 1 : AutA,X ,TrustA,X,i,CertX,Y ` AutA,Y

4.4.3 Recommendations

A certificate generally makes a statement about the authenticity of a public key, not about the trustworthiness of the certified
entity. It is important to note, that:

Statement 4.1: Authenticity and trust are completely orthogonal.

However, one can introduce a special type of ”certificate“, which we call a recommendation.

Definition 4.4 (recommendation): A recommendation RecX,Y,i is an explicit statement, signed by an entity X, that entity
Y is trustworthy (of level i).

The basic idea is that if one trusts X, then one can accept the recommendation and consider Y as trustworthy. But it is
important to note that a higher level of trust is required for accepting a recommendation. Therefore, there are in principle
an unbounded number of trust levels.

• Level 1: Trust X that a certificate issued by X is correct.

• Level 2: Trust X that an entity recommended by X can be considered trustworthy to issue certificates (i.e. level 1).

• Level i: Trust X that an entity recommended by X can be considered trustworthy of level i− 1.

20

4.4.4 Inferring trust

Definition 4.5: The general inference rule for inferring trust in an entity is

∀X,Y, i, j ≥ 1 : AutA,X ,TrustA,X,i+1,RecX,Y,j ` TrustA,Y,min(i,j)

4.5 Certification structures

4.5.1 The certification graph

Public-key certification scenarios can be characterized by the certification graph, defining which entities certify which other
entities. Two conflicting goals are:

• Entities must be able to efficiently identify suitable certificate chains in the graph such that they trust all entities on
the chain.

• It must be feasible to issue the certificates, i.e., it must be feasible to establish a (physically) authenticated channel.

4.5.2 Hierarchical certification

It is natural to apply a hierarchically organized structure, i.e., to use a tree as the certification graph. The top certification
authority is called the root-CA. Figure 5 gives an example of such an approach.Hierarchical certification

W

X Y

S

A

B

T

Figure 5: Hierarchical certification with root-CA W and two cross-certificates.

A tree is convenient because it is trivial to find a certificate chain from the root-CA to every entity in the tree. If A wants
to authenticate the public key of B, A has to trust all entities on the path to B. However, A typically has no relationship
to the entities on the path to B and hence may not be able to trust them. For instance, the lowest level entity (T in figure
5) who issued the certificate for B could be an administrator in an organization one does not know or even distrust to some
extent.

To trust all entities in the hierarchy because one trusts the root-CA is a very weak argument, except for tightly managed
hierarchies.

4.5.3 Cross-certification

A tree is a rigid and inflexible graph in which there is only one fixed path to a given entity. It may make sense to certify entities
not only downwards, but also between different branches. This is called cross-certification. For instance, two companies who
are entering a business relationship could mutually cross-certify their public keys to avoid the need for higher-level certificates.

4.5.4 Unstructured certification

While a hierarchical certification makes sense for establishing a PKI within a closed hierarchical organization, it is not suited
for non-hierarchical settings like the user population on the Internet.

As an alternative, one can consider a setting where every entity can in principle serve as a certification authority. This leads
to a potentially fine-meshed graph in which there can exist many different certificate chains for a given user. Hence there is

21

much more flexibility in choosing a chain and therefore choosing whom to trust. A disadvantage of this approach is the lack
of central control.

4.5.5 Retrieving certificates

The problem of retrieving the certificates is in general independent of the topology of the certification graph. For example,
certificates could be stored in a publicly accessible directory service, or they could be provided by the target entities.

4.6 Public-key infrastructures (PKI)

4.6.1 Concept

Definition 4.6 (public-key infrastructure (PKI)): The term public-key infrastructure (PKI) refers to the collection of systems
and procedures for the

• generation of secret-key/public-key pairs,

• authentication of entities applying for certificates,

• generation of certificates,

• distribution of certificates,

• revocation of certificates, and

• verification of certificates.

4.6.2 Problems

Despite the usefulness, many have failed in implementing a PKI. In fact, there is still not a widely usable national or
international PKI in place. Perhaps the most important reasons for this are:

• There is a chicken-egg-problem: In order for a PKI to be useful, there need to be applications making use of them. On
the other hand, such applications can only emerge and be used broadly if certificates are available.

• Standardization. One needs clear, enforceable standards, both for applications and for the PKI. However, not all
players in the market are interested in having strong standards in place, and therefore a clear standard is still missing.
The de-facto standard X.509 is not sufficiently precise and flexible.

• There is still a lack of understanding what a PKI can achieve, and unrealistic hopes lead to failure.

• Legal problems. A PKI should be compatible with the diverse national legal systems. However, legal systems are slow
in adapting to technical developments.

4.6.3 The naming problem

A name is a digital object (i.e. a bitstring) used to refer to an entity. Names should be unambiguous and unique, at least
in the given context. A name can consists of several parameters, e.g. name, employer, one or several email addresses, or a
photograph.

There is a trade-off regarding the amount of information contained in an entity’s name. One one hand, there must be
sufficient information for uniqueness of names, but on the other hand, the parameters of the name should be stable over
time. For instance, an e-mail address often changes when a person changes jobs. There is also a privacy issue: certain
information (e.g. a photograph) should not leak outside a defined environment.

Obviously a person can play the role of many different entities, e.g. as private person, as an employee or as a forum user
(using a pseudonym).

4.6.4 Expiration and revocation

A certificate usually carries an expiration date, after which it is considered invalid. the concept of expiration is non-trivial.
For instance, how does one prove that a digital signature was issued before or after the certificate has expired?

A certificate can also become invalid before it expires, for a number of possible reasons, including:

22

• Changes of certain parameters of the name (e.g. address)

• The expiration of a certain entity (e.g. a person leaving a company)

• Loss of control of the secret key corresponding to the certified public key

• Compromise of the secret key

Therefore there must be a mechanism for declaring a public key invalid. This process is called revocation. Note that one
should speak about the revocation of a public key, rather then the revocation of a certificate. For a single public key, there
might be several certificates.

Two approaches to the revocation of certificates are usually considered. In both approaches, to revoke a certificate, one must
contact the CA who issued it.

• Certificate revocation list (CRL). The CA publishes regularly (say every week) a signed list of revoked certificates.
Before using a certificate one must check the corresponding CRL.

• Revalidation certificates. The second approach is to ask the CA to revalidate a certificate each time one uses it. If
a certificate (or a public key) has been revoked, the CA will not issue such a revalidation certificate.

Actually, one can argue that both approaches are essentially equivalent, differing only in the granularity of updates.

Revalidation certificates appear to be somewhat strange: Why is the certificate needed in the first place, if, whenever the
certificate is used, a revalidation certificate has to be issued anyway. It seems that one could eliminate the certificate.

4.6.5 PKI key recovery

Key backup supports recovery of lost keys, e.g. due to memory lapse, dish crash, broken smart card, etc. This serves an
important business need, e.g. for keys belonging to roles, dismissed/ill/forgetful employees, etc.

Key escrow concerns storing keys so that legal/government agencies may potentially use them to decrypt communications.
However, this is generally unpopular.

The mechanisms used for this is to store the key with some authority (e.g. CA). One can reduce the trust in the authority
by splitting the key into n shares stored by different parties where all (or m) shares must be combined to recover the key.

Regarding PKI key recovery, encryption keys can be distinguished from signing keys:

• Loss of a decryption key is problematic and should be stored somewhere.

• Loss of a signing key on the other hand is unproblematic, one can just get a new one. The old signatures can still be
checked. A back-up inside a CA is not desirable (increases chance of theft).

4.6.6 PKI trust models

1. Single CA

• A single CA for the entire world, where all systems are configured with the CA’s public key.

• All certificates are obtained from the directory of the organization running the CA.

• Advantages

– Certificate chains all of length 1

– No need to trust recommendations

• Disadvantages

– No organization trusted by all countries, companies, etc.

– Inconvenient, insecure and expensive to obtain certificates from a distant organization.

– Periodically changing keys is good practice, but changing the CA’s key means reconfiguring the world.

– CA has a monopoly and can charge excessive fees.

2. Single CA+RAs

• A single CA with multiple registration authorities (RAs) trusted by the CA to verify name/key binding and send
request to the CA.

• To authenticate requests, the CA has the key of all RAs

23

• Advantages

– User interact with local RA.

– Still need only one public key of a single CA.

– Revocation of compromised RA key is easy (notify the CA).

• Disadvantages

– Drawbacks of the single CA model remain.

– Must trust all RAs to properly authenticate users.

3. Oligarchy of CAs

• Like the single CA model, but with multiple CAs

• Advantages

– More convenient as CAs can be local.

– Competition between CAs.

• Disadvantages

– Less secure than single CA model, as compromising one CA key suffices to generate bogus certificates.

– Requires principals to have a ”certificate store“, which could be manipulated by adding keys.

4. Variant 1 on oligarchy of CAs

• Rather than distributing all CA certificates to principals, CAs instead have cross certificates in their certificate
repositories.

• Advantages

– Useful with multiple ”domain-specific“ CAs, which mutually certify each other keys.

5. Variant 2 on oligarchy of CAs: name-spaces

• A name-space is a set of names for which a CA is trusted to certify name-key mappings.

• Example: the ETH CA can certify president@ethz.ch, but not president@white-house.gov.

• Can add cross-certificates.

• Can add hierarchical name-spaces, each such name-space associated with a hierarchy of CAs.

6. Configured and delegated CAs

• CAs whose keys are configured in a workstation can authorize other CAs to act as delegated CAs.

• Both kinds of CAs completely trusted, both to issue certificate and to recommend delegates as trustworthy CAs.
Principals thereby trust all certificates in the chain.

• Advantages

– Easy for users to obtain certificates from a local CA.

– Principals must not be configured with all certificates.

• Disadvantages

– As before, compromise of any CA results in a complete compromise.

– Strong assumption of transitive trust.

24

president@ethz.ch
president@white-house.gov

Part II

David Basin

5 Introduction

5.1 What is information security?

5.1.1 General definitions

• Computer security concerns the prevention and detection of improper actions by users of a computer system. The
definition of (im)proper is central.

• Information security is even more general. It deals with proper use of information, independent of computer systems.

5.1.2 Security as policy compliance

For any system we have a specification that states what it is supposed to do, an implementation that shows how it does it,
and one can consider correctness, i.e. does it really work.

In security, the specification is given by a policy, the implementation is a mechanism, and we speak of compliance for
correctness.

Security policies are used to state what system behavior is, and is not, allowed, and security mechanisms are used to enforce
these policies. More formally, a specification can be seen as a predicate Φ (i.e. a security property). A system P employing
mechanisms is secure, if P � Φ.

5.1.2.1 Examples of security properties

The most traditional security properties are (CIA):

• Confidentiality (Secrecy): No improper disclosure of information

• Integrity: No improper modification of information

• Availability: No improper impairment of functionality/service

Note that (im)proper must be specified individually for each system. CIA emphasis originated in military context with
centralized systems.

There are several other relevant security properties, including:

• Authenticity (e.g. ”message originated from Alice“) is closely related to integrity, with a difference in emphasis.

• Non-repudiation (also called accountability) is where one can establish responsibility for actions.

• Plausible deniability is contrary to non-repudiation and can be seen as a weak form of secrecy.

• Privacy

– Anonymity: Secrecy of principal identities or communication relationships

– Data protection: personal data is only used in certain ways

5.1.2.2 Properties, policies and mechanisms

The distinction generally is rather fuzzy, but the following could be a definition:

• Properties are generally high-level, describing (un)acceptable system behavior

• Policies may just be the conjunction of different properties.

• Alternatively, policies may be more low-level and operational, e.g. rules like ”when choosing passwords, strong pass-
words must be used“.

• Mechanisms are concrete, e.g. implementation components.

The boundary to other non-security properties is also fuzzy. There is a large overlap between building secure systems and
building correct systems.

25

5.1.2.3 Secure coprocessor as an example

A secure cryptographic coprocessor is a device with secure memory with crypto support protected against physical attacks.
The IBM 4758 secure coprocessor supports layered applications, where each layer has an owner. Only IBM can alter the
hardware or the boot system, i.e. IBM acts as a root of trust.

• Layers and owners each have a keypair.

• The private key of layers is stored in persistent storage and protected from higher layers.

• All layers are physically secured, e.g. parts of memory are read only, tamper-proof packaging, etc.

• Layer i uses private key for

– outbound authentication,

– certifying integrity of i+ 1st layer, and

– assigning ownership of i+ 1st layer by certifying the owner’s public key.

• The owner uses his private key to authenticate commands, e.g. load code at that layer.

Examples of properties of a coprocessor include:

• Outbound authentication: It must be possible to distinguish between a message from a layer N with a particular
software environment on a particular untampered device from a message from a clever adversary.

• Inbound authentication: Suppose A has ownership of a software layer in an untampered device, then only A or a
designated representative can load code into that layer in that device.

• Access to secrets: Secrets belonging to layer N are accessible only by code that authority N trusts executing on an
untampered device in an appropriate execution environment.

5.1.3 Security as risk minimization

Focus on risks from vulnerabilities and their exploitation.

Most practical approaches to information security (e.g. security audits) are oriented around such a classification. Especially
for system administration rather than construction.

The risk analysis and reduction steps can be divided into two parts:

1. Analysis of existing risks

i) Identify assets you with to protect. What are the (information) assets and their functionality?

ii) Identify risks to these assets (the hard part). Requires understanding threat agents and their threats as well as
vulnerabilities.

2. Analysis of proposed security solution.

i) How well do proposed countermeasures reduce risk?

ii) What other risks and tradeoffs do measures themselves bring?

26

6 Networks

6.1 Introduction

The internet is a confederation of networks using TCP/IP, with no global domain of trust. Different subnetworks may or
may not be trustworthy, and 15+ hops for a packet to reach is destination is common. Furthermore, TCP/IP do not provide
security (authentication or confidentiality). Addresses can be faked and the payload can be both read and modified. In such
a setting, various questions arise, such as:

• How do we secure (encrypt and authenticate) communication?

• End-to-end? Hop-by-hop? Gateway-to-gateway?

• At which layer: link, internet, transport or application layer?

6.2 Application-managed security

Each application is responsible for setting up secure communication and enforcing least privilege (access control). The
rational follows the end-to-end principle.

6.2.1 Advantages

• No need to trust intermediate nodes/layers/protocols.

• No need to change/configure them either, or manage their keys.

• Security decisions can be based on user ID, user data, etc.

• Examples include mail encryption and authentication (e.g. PGP or S/MIME) or SSL/TLS (endpoints are browsers
and servers).

6.2.2 Problems

• Assumes mechanisms are prefect

– Design: right use of crypto, no attacks from below, etc.

– Implementation: no buffer overflows, injection attacks, etc.

• Assumes users are prefect

– They understand the enterprise security policy.

– They respect the policy, e.g. no insider fraud.

– They properly configure the mechanisms, manage credentials, etc.

– They are immune to social engineering and the like.

• Assumptions are clearly naive.

Further problems include the following:

• Lack of support for legacy or 3rd party applications

• Network (midbox) mechanisms are still needed, e.g. for incident response, it is simplest to restrict access at choke-points
(firewall).

• Interference with midbox mechanisms. Example: mail virus scanning and archiving is best implemented as a central
service, but this is difficult if mail is encrypted end-to-end.

In general application-managed security is a poor fit with the current trend to centrally managed and enforced security.

Finally, what are the actual endpoints? Could be the ends of the application, the relevant servers or even the users themselves.
The answer depends on what you trust, i.e. end-to-end is more like trust-to-trust. Principle: place functionality where you
can trust it.

27

6.3 Network-managed security

In general there are options of where to secure communication (end-points, etc.) and at what level in the network stack.

6.3.1 Implementing lower-layer/midbox security

An example is SSL (or TLS/SSH) where the OS does not change, but the applications do. The SSL API is an extension of
sockets API to TCP. Another example is IPSec: The OS changes, but the applications and the TCP API remain unchanged.

Figure 6: SSL and IPSec in the network stack.

Advantages of lower-level/midbox security are the following:

• Implement security solutions once, rather than at each application.

• Users are not bothered with security, most do not understand it either.

• Some commercial ”off-the-shelf“ systems do not provide security, therefore it is needed at a lower level (or some kind
of wrapper).

• Some solutions are better operated/maintained at midboxes (e.g. intrusion detection systems or spam filtering which
benefit from a global view of all subnet traffic).

Some examples and tradeoffs that are involved:

• SSL/TLS

+ No modification to the OS, minimal changes to applications.

+ Can work with user certificate (usually not in practice).

- Lack of client-side authentication leads to various problems in practice (MITM attacks).

• IPSec

+ Transport layer security without modifying applications.

- Only authenticates IP addresses, no user authentication.

+/- More is possible, but requires changing API and applications.

• WPA(2)

+/- Secures just one link, but typically the most vulnerable one.

6.4 Protecting the network

Securing systems in just one way is not enough; protection of individual elements is usually to coarse. The principle of
defense in depth argues for layered measures, such that if one mechanism fails, there are other fall backs. For instance, access
control is implemented in firewalls, applications and the database back-ends.

This redundancy is usually beneficial, although adds complexity and cost, and contradicts the ”keep it simple“ principle.
This principle says that all systems have bugs, and therefore the every executable program exposes you to attacks. Their
execution should be disallowed whenever possible.

A related principle is system hardening, where all unneeded services are shut down, and only those required to get the job
done are kept. Also, vulnerabilities should be minimized by good engineering/maintenance (i.e. code reviews, testing, patch
maintenance).

28

6.4.1 Firewalls

Firewalls assume network adversaries as a threat model, and try do not allow them onto your machine. This establishes a
trust perimeter, where the firewall acts as a boundary between untrusted and (internal) trusted machines. It is also possible
to have multiple layers of trust with corresponding boundaries.

The firewall is a protection mechanism at the cross-over point which controls everything that crosses the perimeter.

There exist two kinds of firewalls:

• Packet filters

– Essentially a router that performs access control.

– Example: Disallow all inbound FTP connections, or only allow incoming connections to port 22 (SSH).

– Simple to set up, although access control is coarse grained.

• Application-layer proxies

– Control input/output/access to an application or service.

– Can inspect content of traffic, filtering undesirable data. For instance input filtering against injection attacks,
virus scanning, etc.

– Can require additional authentication.

In general, the arguments for firewalls outweigh arguments against them, i.e. firewalls are rightfully popular.

• Pros

– Scales better than host security.

– One place (or more) to set up a secure policy.

– Compatible with (insecure) legacy systems.

• Cons (mainly for packet filters)

– Does not handle surfing/email very well.

– Does not help when application traffic is tunneled over http, which is very common.

– Problems with complex trust perimeters (e.g. joint ventures)

6.4.2 Example: securing a web server

A web server is a prime target for attacks, and our internal machines (e.g. database back-ends) should be protected from it.
The server is better put in the DMZ, outside the main firewall, as shown in figure 7. This puts on a ”sacrificial“ machine,
which can be restored from backups if hacked.

Figure 7: Where to put a web server.

6.4.3 Insider attacks

The trust perimeter is often incorrect as machines and users inside the perimeter are not always trustworthy. For instance
a user adding a wireless access point to his machine will also change the trust perimeter and subvert the firewall.

Insider attacks (both unintentional and malicious) are more common than suspected. They are difficult to solve technologi-
cally while maintaining usability.

29

6.4.4 Intrusion detection systems

Intrusion detection is the process of monitoring and analysing system or network events for signs of possible incidents, which
represent (imminent) violations of computer security policies. Possible forms:

• Host-based: monitor events of individual hosts, e.g. to identify a break-in.

• Network-based: examine network-wide traffic flow, e.g. to identify a distributed denial-of-service attack.

Intrusion detection is an example of defense in depth, and one can even combine multiple intrusion detection systems. They
are also useful to spot insider attacks.

There exist various forms of intrusion detection systems, which can be grouped as follows:

• Signature based

– Recognize patterns corresponding to known threats.

– Example: repeated attempts to log in as root.

• Anomaly based

– Uses machine-learning techniques to classify ”normal“ behavior, characterizing users, hosts, network connections
or applications.

– Compare observed events to identify significant deviations.

– Example: number of emails sent by users, number of failed login attempts for a host, process usage, etc.

– Can detect previously unknown threats, e.g. a break-in that initiates many network connections.

The drawbacks of intrusion detection systems include the following:

• Limited effectiveness

– How well do rules/profiles capture future events?

– It is not always clear what’s inside the box.

• Too many false alarms

– Handling these is costly, they are eventually ignored.

• High life-cycle costs, e.g. training and maintenance.

• Systems can be subverted

– Arms race, especially for signature-based systems.

30

7 Security protocols

7.1 Basic notations

7.1.1 Security protocols

A protocol consists of a set of rules (conventions) that determine the exchange of messages between two or more principals.
In short, it is a distributed algorithm with emphasis on communication. For instance:

1. A→ B : {A,NA}KB

2. B → A : {NA, NB}KA

3. A→ B : {NB}KB

Security (or cryptographic) protocols use cryptographic mechanisms to achieve security objectives. For the rest of this
document, the following notation is used:

• Names: A, B or Alice, Bob, ...

• Asymmetric keys: A’s public key is KA and the corresponding private key K−1A .

• Symmetric keys are denoted by KAB (shared key for A and B).

• Encryption: asymmetric {M}KA
and symmetric {M}KAB

.

• Signing: {M}K−1
A

.

• Nonces: NA. Nonces (”numbers used once“) are fresh data items used for challenge/response.

• Timestamps: T . Denote time, e.g. for key expiration.

• Message concatenation: M1,M2 or M1||M2.

The fundamental event is communication between principals, e.g.

A→ B : {A, TA,KAB}KB

where A and B are roles. These roles can be instantiated by any principal playing the role. Communication is generally
asynchronous (depending on the semantic model).

7.1.2 The attacker

There are several possibilities to model the attacker:

• He knows the protocol but cannot break crypto. Attacks on crypto and attacks on the communication are separate
concerns.

• He is passive but overhears all communications.

• He is active and can intercept and generate messages.

• He might even be one of the principals running the protocol.

The standard symbolic attacker model known as Dolev-Yao threat model is mostly used in practise. In this model, the
attacker is active and completely controls the network:

• He can intercept and read all messages.

• He can decompose messages into their parts, but cryptography is perfect. Decryption requires the inverse keys.

• He can construct and send new messages, any time.

• He can even compromise some agents learning their keys.

In this context, a protocol should ensure that communication between non-compromised agents achieves objectives.

31

7.1.3 Protocol objectives

The terminology is not completely standard, but the following are typical:

• Entity authentication: One party verifies the identity of a second party and that this party has recently, actively
participated in the protocol (”I am here now“).

– Agreement is a stronger notation of entity authentication. A protocol guarantees that an initiator A has non-
injective agreement with a responder B on a set of data items ds if, whenever A (acting as initiator) completes a
run of the protocol, apparently with responder B, then B has previously been running the protocol, apparently
with A, and B was acting as responder in his run, and the two agents agreed on the data values corresponding to
all variables in ds.

– Injective agreement when additionally each run of A corresponds to a unique run of B. The analogous notion of
matching histories sometimes used.

• Secrecy (confidentiality): Data available to those authorized to obtain it. For keys, this is sometimes called key
authentication.

• Freshness: Data is new, i.e., not replayed from an older session.

• Key confirmation: One party is assured that a second party actually possesses a given key.

7.2 Problems and principles

7.2.1 Examples of kinds of attack

• Man-in-the-middle (or parallel sessions) attack: pass messages through to another session A↔M ↔ B.

• Replay (or freshness) attack: record and later re-introduce a message or part of a message.

• Reflection attack: send transmitted information back to the originator.

• Oracle attack: take advantage of normal protocol responses as encryption and decryption ”services“.

• Type flaw (confusion) attack: substitute a different type of message field.

• Guessing attack: protocol uses passwords and provides a means to verify a guessed password, e.g. {known string}K .

7.2.2 Principles for designing cryptographic protocols

Mart́ın Abadi and Roger Needham describe in their paper Prudent Engineering Practice of Cryptographic Protocols several
principles:

1. Every message should say what it means. Its interpretation should depend only on its content.

2. The conditions for a message to be acted upon should be clearly set out so that someone reviewing a design may see
whether they are acceptable or not.

3. If the identity of a principal is essential to the meaning of a message, it is prudent to mention the principal’s name
explicitly in the message.

4. Be clear about why encryption is being done. Encryption is not wholly cheap, and not asking precisely why it is being
done can lead to redundancy. Encryption is not synonymous with security and its improper use can lead to errors.

If the cryptography is asymmetric, it may be obvious what is intended, with symmetric cryptography, it is generally
not. Encryption is used for various purposes:

• Preservation of confidentiality. In this case, it is assumed that only the intended recipients know the key needed
to recover a message.

• Guarantee of authenticity. Here it is assumed that only the proper sender knows the key used to encrypt a
message.

• Binding of parameters: receiving {X,Y }K is not always the same as receiving {X}K and {Y }K . When encryption
is used only to bind parts of a message, signature is enough.

• As a source for random numbers.

32

5. When a principle signs material that has already been encrypted, it should not be inferred that the principal knows
the content of the message. On the other hand, it is proper to infer that the principal that signs a message and then
encrypts it for privacy knows the content of this message.

6. Be clear what properties you are assuming about nonces. What may do for ensuring temporal succession may not do
for ensuring association. And perhaps association is best established by other means.

7. The use of a predictable quantity (such as the value of a counter) can serve in guaranteeing newness, through a
challenge-response exchange. But if a predictable quantity is to be effective, it should be protected so that an intruder
cannot simulate a challenge and later replay a response.

8. If timestamps are used as freshness guarantees by reference to absolute time, then the difference between local clocks
at various machines must be much less than the allowable age of a message deemed to be valid. Furthermore, the time
maintenance mechanisms everywhere becomes part of the trusted computing base.

9. A key may have been used recently, for example to encrypt a nonce, yet be quite old, and possibly compromised.
Recent use does not make the key look any better than it would otherwise.

10. If an encoding is used to present the meaning of a message, then it should be possible to tell which encoding is being
used. In the common case where the encoding is protocol dependent, it should be possible to deduce that the message
belongs to this protocol, and in fact to a particular run of the protocol, and to know its number in the protocol.

11. The protocol designer should know which trust relations his protocol depends on, and why the dependence is necessary.
The reason for particular trust relations being acceptable should be explicit though they will be founded on judgement
and policy rather than on logic.

7.3 Formal methods

Formal analysis of protocols approaches protocol correctness as system correctness. A formal symbolic model M is build for
the protocol:

• Formal: well-defined mathematical semantics.

• Symbolic: abstract away bitstrings to (algebraic) terms.

• Model: a transition system describing all actions of principals and the attacker.

Furthermore, a property Φ is specified. This property is typically a safety property, for instance that secrecy is an invariant.
Correctness then is M � Φ. The main techniques used are theorem proving and model checking.

7.3.1 Modeling protocols as a trace set

A protocol can be formalized as an inductively defined trace set. As an example, we formalize the Needham-Schroeder
protocol with a set P :

1. 〈〉 ∈ P

2. t, A→ B : {A,NA}KB
∈ P if t ∈ P and fresht(NA)

3. t, B → A : {NA, NB}KA
∈ P if t ∈ P, fresht(NB) and A′ → B : {A,NA}KB

∈ t

4. t, A→ B : {NB}KB
∈ P if t ∈ P,A→ B : {A,NA}KB

∈ t and B′ → A : {NA, NB}KA
∈ t

5. t, Spy → B : X ∈ P if t ∈ P and X ∈ has(sees(t))

Rules 1-4 formalize the protocol steps and rule 5 the attacker model. sees(t) is the set of messages in the trace t and has(T)
denotes the smallest set of messages inferable from the set T :

• t ∈ T =⇒ t ∈ has(T)

• t1 ∈ has(T) ∧ t2 ∈ has(T) =⇒ (t1, t2) ∈ has(T)

• (t1, t2) ∈ has(T) =⇒ ti ∈ has(T)

• t1 ∈ has(T) ∧ t2 ∈ has(T) =⇒ {t1}t2 ∈ has(T)

33

• t1 ∈ has(T) =⇒ hash(t1) ∈ has(T)

• {t1}t2 ∈ has(T) ∧ t−12 ∈ has(T) =⇒ t1 ∈ has(T)

These rules reflect the perfect cryptography assumption: Decryption requires the right key, hashing is collision free and the
attacker cannot compute preimages of hash functions.

A property now also corresponds to a set of traces. For instance, authentication in the Needham-Schroeder protocol could
be expressed as follows:

• (A authenticates B)(t) ≡ if A→ B : {A,NA}KB
∈ t and B′ → A : {NA, NB}KA

∈ t then B → A : {NA, NB}KA
∈ t

• (Spy attacks A)(t) ≡ ¬(A authenticates B)(t)

Verification of protocols can occur in various ways. For instance it is possible to interactively verify protocols using an
inductive approach. Proof scripts are constructed by hand (with machine support), and then verified by machines. Flaws
come out in terms of unprovable goals.

It is also possible to use model-checking, as the inductive definition gives rise to an infinite tree, where each path from
the root to a node corresponds to a trace. State enumeration can be used to find attacks, but pure state enumeration is
hopelessly inefficient. However, effective model-checking tools exist and are based on automatic, algorithmic methods rather
than interactively constructed proofs in a formal logic.

7.4 Protocols example

7.4.1 Kerberos

Kerberos is a mechanism for authentication in distributed systems, and one of the first successful single sing-on protocols.
One password per session is used, and any subsequent authentication happens behind-the-scenes. The requirements when
designing Kerberos at MIT where the following:

• Secure: Only authenticated users have access to authorized resources.

• Single sign-on: Each user enters a single password to obtain network services and should be unaware of the underlying
protocols.

• Scalable: The system should scale to support large numbers of users and servers.

• Availability: As many services depend on Kerberos for access control, it must be reliable. Bottlenecks should be
avoided.

The protocol supports the first three requirements, while the last one is achieved by replicating the Kerberos server.

7.4.1.1 Protocol overview

Kerberos makes use of the standard patter for session-key distribution using a trusted T by creating a secure channel between
A and B if they each share a key with T . An overview is shown in figure 8.

Figure 8: Overview of the Kerberos protocol.

The exact messages include nonces (or rather timestamps) to ensure recentness. The double encryption in the second message
is actually not needed.

1. A→ T : A,B,N1

2. T → A : {N1, B,KAB , {KAB , A}KBT
}KAT

34

3. A→ B : {KAB , A}KBT

4. B → A : {N2}KAB

5. A→ B : {N2 − 1}KAB

7.4.1.2 Kerberos architecture

The architecture of Kerberos is shown in figure 9. Authentication happens using the Kerberos Authentication Server (KAS),
authorization with the Ticket Granting Server (TGS) and access control takes place when the server (who provides a service)
checks the TGS ticket.

Figure 9: Kerberos architecture.

7.4.1.3 Detailed view how the protocol operates

How Kerberos operates in practise is shown in figure 10.

Figure 10: Kerberos operation.

Messages 1 and 2 are used for authentication and are only done once per user login session. Messages 3 and 4 achieve
authorization and take place once for every type of service. Finally, messages 5 and 6 request the service, and take place
once per service session.

The exact messages (slightly simplified) are as follows:

1. A→ KAS : A, TGS

2. KAS → A : {KA,TGS , TGS, T1, {A, TGS,KA,TGS , T1}KKAS,TGS︸ ︷︷ ︸
AuthTicket

}KA,KAS

A logs onto its workstation and requests a network resource. The KAS accesses the database and sends A a session key
KA,TGS and the encrypted ticket AuthTicket. The session key KA,TGS has a lifetime of several hours and KA,KAS is derived
from the user’s password. Both the user password and KKAS,TGS are saved in the database.

35

3. A→ TGS : {A, TGS,KA,TGS , T1}KKAS,TGS︸ ︷︷ ︸
AuthTicket

, {A, T2}KA,TGS︸ ︷︷ ︸
authenticator

, B

4. TGS → A : {KA,B , B, T3, {A,B,KA,B , T3}KB,TGS︸ ︷︷ ︸
ServTicket

}KA,TGS

Before A’s first access to the network resource B, A presents AuthTicket from message 2 to the TGS together with a
new authenticator, with a short lifetime (seconds). Tickets can be used multiple times, authenticators only once. This
short validity of the authenticator is used to prevent replay attacks, and for immediate replays, the server stores recent
authenticators.

The TGS then issues A a new session key KA,B (with a lifetime of a few minutes) and a new ticket ServTicket.

5. A→ B : {A,B,KA,B , T3}KB,TGS︸ ︷︷ ︸
ServTicket

, {A, T4}KA,B︸ ︷︷ ︸
authenticator

6. B → A : {T4 + 1}KA,B

Then, in the last phase, A can access the network resource B by presenting the ticket from message 4 with the new
authenticator. In practise, other information for the server might be sent too. B can optionally reply to authenticate the
service.

7.4.1.4 Scalability of Kerberos

A realm is defined by a Kerberos server (KAS+TGS). A large network may be divided into administrative realms, since
Kerberos supports inter-realm protocols:

• Different servers register with each other.

• For A to access B in another realm, the TGS in A’s realm receives request and grants a ticket to access the TGS in
B’s realm.

Protocol extension is simple, only two additional steps are required. However, for n realms, a O(n2) key distribution problem
arises.

7.4.1.5 Limitations of Kerberos IV

• Message 1 does not need encryption, but an attacker can flood the KAS.

• The double encryption in message 2 is redundant and eliminated in Kerberos V.

• Relies on (roughly) synchronised and uncompromised clocks.

Nevertheless, Kerberos is one of the most widely adopted authentication solutions.

7.4.2 SSL/TLS

The goals of SSL are secrecy, integrity and (optionally mutual) authentication, and it was originally developed to allow credit
card payments over the internet.

The protocol consists of various subprotocols, which run on top of TCP:

• SSL handshake: initiates (or reinitiates existing) connection. Establishes channel with desired properties.

• SSL record: protocol for sending application data. Describes the way in which application data is compressed,
authenticated with a MAC and how the resulting payload is encrypted.

• Other protocols for renegotiation ciphers and error recovery.

Although the protocol is complex, the underlying concepts are fairly simple. An SSL session is an association between the
client and the server, with an associated state that specifies encryption method, client and server MAC secrets, encryption
keys, etc. An SSL connection is basically a secure stream within a session.

36

7.4.2.1 SSL handshake

The SSL handshake works in four steps:

1. Establish security capabilities, negotiate cipher.

2. Exchange server certificate.

3. client key exchange and optional authentication of the client using a client certificate.

4. Finish establishing session.

In the hello phase, the client identifies itself (in practice, the IP address from TCP is used; the actual standard doesn’t
include this), and algorithm preferences PA and PB (chosen from PA) are exchanged. SID is the session identifier.

1. A→ B : A,NA, SID, PA

2. B → A : NB , SID, PB

Next, the server certificate is exchanged:

3. B → A : certificate(B,KB)

Then, the client exchange follows, where the client authenticates itself (optional), and the pre-master secret (PMS) is sent.
The PMS is a pseudo-random string used to compute master secret M , in turn used to generate various keys. For the client
authentication, A sends his certificate and a hash of all previous messages.

4. A→ B : certificate(A,KA) (optional)

5. A→ B : {PMS}KB

6. A→ B : {hash(...)}K−1
A

(optional)

In the last step, a hash of all previous messages is sent, encrypted by the symmetric keys for client and server encryp-
tion/decryption. These keys are generated from NA, NB , and M . Also, 4 other keys are generated, used for MACs and as
initialization vectors for the stream cipher.

7. A→ B : {FinishedA}Kclient

8. B → A : {FinishedB}Kserver

When no client certificate is used, this results in a secure channel with a pseudonym. Hence, SSL is often followed by
additional client authentication over the secure channel.

7.4.2.2 Solutions to phishing

Phishing is a server-side authentication problem, for which various solutions are proposed:

1. Multiple communication channels

• Combine SSL with GSM (cellular telephones).

• Server sends user a TAN by SMS.

• User sends TAN back over SSL connection.

This method fails as a user authentication mechanism. A MITM attack is still possible, the attacker need not to
eavesdrop on the SMS.

However, as an additional transaction key, this method works. The bank could send ”transfer $50 to UBS account
62357: confirm with JX56R5“ via SMS to the user.

2. Session-aware user authentication

• In the last round, hashes of previous messages are sent. This can be used to make the user authentication depend
on both the user’s credentials and on state information related to the session where the credentials are sent.

37

• The server can then check if the session in which it receives the credentials is the same used by the user when
sending the credentials.

3. User client certificates

• Fully prevents MITM attack as the attacker cannot sign a hash of all previous messages (including client and
server certificate).

• Unfortunately client-side certificates are rarely used.

• Technological solutions exist, but the usability is the problem.

7.4.3 IPSec

IP security achieves end-to-end security where the endpoints are clients/servers or security gateways. It offers message
authentication and encryption, protects packet headers (address and ports) and allows traffic filtering based on a policy
database.

Prior to the actual communication, two IPSec peers must first determine the security services (encryption, integrity protection,
authenticity), the algorithms (DES, 3DES, AES, MD5, SHA-1, ...) and session keys. This information is stored in a security
association and can either be set up by hand, or negotiated using the Internet Key Exchange Protocol (IKE). The IKE
protocol is an application layer protocol, and at its heart is Diffie-Hellman with some extensions.

7.4.3.1 Protocol modes

• Transport mode

– Used between end-stations or between an end-station and a gateway.

– Standard protocol encapsulation, except that the payload is encrypted/authenticated.

• Tunnel mode

– Used between gateways, or from an end-station to a gateway action as a proxy for the host behind it.

– Tunneling, where a payload protocol is encapsulated in a second delivery protocol.

– E.g. setting up a VPN.

7.4.3.2 Headers

• Authentication header (AH): protects the integrity and authenticity of IP datagrams, but not their confidentiality.

– In transport mode: provides end-to-end protection between IPSec-enabled systems.

– In tunnel mode: new outer headers also protected and may be different.

• Encapsulating security payload (ESP): protects confidentiality and optionally also integrity.

– In transport mode: encrypts the payload, but leaves the header untouched.

– In tunnel mode: entire IP datagram encapsulated within ESP.

38

7.4.3.3 Security policy database

IPSec uses a security policy database to decide what to do with each packet, e.g. do we allow these peers to communicate,
ESP or AH, etc. The SPD is configured by an administrator using rules of the form 〈Condition, Action〉, where the condition
gives an IP address range, ports, protocols, flags etc. and the action is for instance discard, bypass IPSec, apply IPSec with
given security association, run IKE to set up a new security association, etc.

7.4.3.4 Aside: Perfect forward secrecy

Perfect forward secrecy is the property in which an attacker who records an encrypted conversation cannot later decrypt it,
even if he has since compromised the long-term cryptographic secret of each side.

7.4.4 Conclusions

”Real word“ security protocols are complex.

• Complexity is in part due to standardization process.

• The problems themselves are complex in their full generality.

• But complexity is security’s worst enemy.

39

8 Access control

8.1 Basic concepts

8.1.1 AAA

• Identification: The process of associating an identity with a subject.

• Authentication: The process of verifying the validity of something claimed by a system entity (typically their identity).

• Authorization: An authorization is a right or permission that is granted to a system entity to access a system
resource.

• Access control: Protection of a system resource against unauthorized access. Namely, the process and controls for
regulating the use of the system resource by a security policy whereby access is restricted to those entities authorized
by the policy.

These concepts are independent.

8.1.2 Policies and models

A security policy defines what is allowed; that is, which system executions are (in)acceptable. A security model provides a
formal representation of a class of systems and their behavior, highlighting their security features at some chosen level of
abstraction.

Policies and models are often formalized in terms of system states, i.e. the collection of current values of all memory locations,
storage, registers and other components. The part addressing protection is called the protection state.

Let P be the set of protection states and Q ⊆ P be the protection states in which the system is authorized to reside in.

• When the system is in state s ∈ Q, the system is secure.

• For s ∈ P \Q, the system is insecure.

In this model, a security policy characterizes Q. Hence, a security policy partitions the states of the system into authorized
or secure states, and unauthorized or insecure states. Now, a security mechanism prevents a system from entering P \ Q,
and a system is secure, if it starts in an authorized state and cannot enter an unauthorized state.

8.2 Access control matrix model

The access control matrix model is a simple framework for describing a protection system by describing the privileges of
subjects on objects. This constitutes as a model, and, when implemented, as a mechanism.

The protection state (relative to a set of privileges P) is a triple (S,O,M):

• A set of current subjects S.

• A set of current objects O.

• A matrix M defining the privileges for each (s, o) ∈ S × O, i.e. a relation S × O × P , or equivalently a function
S ×O → P(P).

The state transitions are modeled by a set of command, where each command is expressed in terms of six primitive operations:

1. enter p into M(s, o) (for p ∈ P)

2. delete p from M(s, o) (for p ∈ P)

3. create subject s

4. destroy subject s

5. create object o

6. destroy object o

40

For instance, the following command would be possible:

command CreateFile(s, f)

create object f

enter Own into M(s, f)

enter R into M(s, f)

enter W into M(s, f)

end

We now have a transition system with the following semantics:

• Write (S,O,M) `c (S′, O′,M ′) to denote a transition associated with the command c.

• A starting state st0 = (S0, O0,M0) and the set of commands C determine a state-transition system.

• So a model describes a set of system traces, i.e.

st0, st1, st2, st3, . . .

where sti `ci sti+1 for ci ∈ C.

The matrix model defines a family of systems, and this model is parametrized by the set of privileges, the set of commands,
the initial state and a universe of subjects and objects. This (or any other) security model can now be used for several things:

• Specify concrete systems as instances.

• Verify that instances are secure with respect to a given property.

• Reason about general properties of all systems in the class.

• Use it as a bases for mechanism design.

Authorization can be defined as a set of authorized states. However, authorization may depend on the past, in ways not
reflected in the current protection state. In this case, a more general definition is required whereby a policy defines a set of
authorized traces. A system is then secure, when every possible trace is authorized. A simple example of a property that
requires this trace-based definition: ”A user can watch a video at most 4 times“.

Such history-based policies are not well suited for the matrix model, as they require relevant history to be represented as
matrix entries (e.g. how often a video has been played).

8.2.1 Access matrix data structures

There exists various ways to represent the access matrix, either using a two-dimensional object, or a set of one-dimensional
objects. Figure 11 shows an overview of these possibilities.

Figure 11: Access matrix data structures

41

8.2.1.1 Access-control lists (ACL)

Lists are used to express the view of each object o: The ith entry in the list gives the name of a subject si and the rights ri
in M(si, o) of the access matrix. A standard example for AC lists are files.

The implementation of ACL is straight forward: The ACL is associated with each object, and typically maintained by the
OS, middleware, server, etc. Then, the user can just be checked against the list. However, this relies on authentication (need
to know the user).

ACLs are usually used for discretionary access control, where owners have the (usually sole) authority to grant or revoke
rights to the objects they own.

8.2.1.2 Capability lists

This corresponds to the subject view of the access matrix, and a capability is essentially a pair of an object and an operation.

Obviously, users should not be able to forge capabilities:

• Centralized system

– OS manages capabilities in a protected address space.

• Distributed system

– Pair protected using cryptography, e.g. signatures.

– Reference monitor checks ticket.

– Need not know identity of user or process, at least if transitive delegation is allowed.

Capabilities are used less frequently, and typically in a distributed setting (e.g. Kerberos ticket and authenticator).

Compared with ACLs, the situation looks as follows:

• ACLs

+ ACLs are compact and easy to review.

+ Deleting an object is simple.

- Deleting a subject is more difficult.

+ Delegation is possible in a discretionary access control setting: Owners have the (usually sole) authority to grant
or revoke rights to the objects they own.

• Capabilities (in particular when distributed)

+ Delegation is easy.

- Revocation is difficult.

- Not so compatible with object-oriented view of the world.

- In general, difficult to know who has permissions on an object.

8.3 Role-based access control (RBAC)

Security policies should be highly scalable as a very large number of subjects and/or objects is not uncommon in practise.
However, AC matrices (both ACLs or CLs) scale poorly and are difficult to maintain.

The key insight to solve this problem is that user typically have roles within an enterprise and these can be used for access
control.

• Create role for job function in the enterprise.

• Associate each role with a set of permissions.

• Assign users to roles based on their function and associated responsibilities.

The AC-matrix before was defines as M ⊆ S × O × P where P is a privilege like ”read“ or ”write“. We now recast this
matrix as AC ⊆ Users × Permissions. This gives us declarative access control, i.e. authorization is specified by a relations:
A user is granted access if and only if he has the required permission.

u ∈ Users has p ∈ Permissions ⇐⇒ (u, p) ∈ AC

42

Role-based access control now decouples users and permissions by introducing roles. This can be formalized by a set of roles,
and the relations UA ⊆ Users× Roles and PA ⊆ Roles× Permissions where

AC = PA ◦ UA

This notion can be extended to role hierarchies (i.e. a partial order ≥) on roles. Now we have

AC = PA ◦ ≥ ◦ UA

8.3.1 Advantages and disadvantages

RBAC has many advantages, which make it enormously popular. For instance:

• Roles are stable semantic concepts within an enterprise. User come and go, but activities/functions change only slowly.

• Supports different well-known security principles:

– Least privilege: achieved by assigning only those permissions required for the tasks to the role.

– Separation of duty: achieved by ensuring mutually exclusive roles (in terms of users) must be invoked to
complete a task.

• Assignments are understandable from the business perspective, which eases both administration and audit.

However, there are some limitations:

• Can not base access-control decisions on the system state.

• Can not specify obligations incurred by the granted access.

• No way to enforce sequences of events using RBAC.

To overcome this problems, RBAC is often combined with programmatic access control. For example: ”A user in the role
customer can withdraw money from an account (RBAC) when he is the owner and sufficient funds are available (programmatic
access control).

8.4 Discretionary access control (DAC)

The principle behind DAC is that users own resources and control their access. In particular, this means

• Owners may change an object’s permissions at his discretion.

• This allows the direct delegation of rights.

• Owners may even be able to transfer ownership to other users.

This is rather flexible, but also open to mistakes, negligence, or abuse.

• Requires all user to understand the mechanisms and to understand and respect the security policy.

• No control of information dissemination.

8.5 Mandatory access control

In MAC, access control decisions are formalized (and controlled) by comparing security labels indicating sensitivity/criticality
of objects with formal authorization, i.e. security clearances, of subjects.

In this model, a system-wide access restriction to object is specified. It is mandatory because subjects may not transfer their
rights. This shifts the power from the users to the system owner.

The model has a military background with clearance levels such as top secret, secret, confidential, and unclassified.

Besides clearance levels, there are also compartments (or categories), which specify a domain for a need-to-know policy.

43

8.5.1 Lattice

A set S with a relation ≤, written (S,≤), is partially ordered if ≤ is

• Reflexive: for all a ∈ S, a ≤ a.

• Transitive: for all a, b, c ∈ S, if a ≤ b and b ≤ c, then a ≤ c.

• Anti-symmetric: for all a, b ∈ S, if a ≤ b and b ≤ a, then a = b.

A partially ordered set (S,≤) where for all a, b ∈ S there exists a least upper bound u ∈ S and a greatest lower bound l ∈ S,
i.e.

• a ≤ u, b ≤ u and (a ≤ v ∧ b ≤ v) =⇒ (u ≤ v) for all v ∈ S.

• l ≤ a, l ≤ b and (k ≤ a ∧ k ≤ b) =⇒ (k ≤ l) for all k ∈ S.

Latices are well suited for access control, because questions like ”Given two objects with different labels, what is the minimal
label a subject requires to be allowed to read both objects“ can uniquely be answered. This is useful for a need-to-know
policy, where each subject is assigned a label reflecting least privilege required for this function. Classifications can be
combined, e.g.

Class = 〈level, compartment〉

The dominance relation is defined componentwise (lattice product) on linearly-ordered levels and subset-ordered compart-
ments:

(r1, c2) ≤ (r2, c2) ⇐⇒ r1 ≤ r2 ∧ c1 ⊆ c2

8.5.2 Bella-LaPadula (BLP) model

The BLP models security policies for confidentiality, with authorization for subjects to read and also to write objects. The
main challenge is preventing information flow.

Access decisions satisfy the following properties:

• Read-down (also called simple security property): A subject with label xs can only read information from an object
with label xo if xs dominates xo.

• Write-up (also called the *-property): A subject with label xs can only write information to an object with label xo
if xo dominates xs.

The main insight in this model is that prohibiting write-down is essential for confidentiality as otherwise information can
effectively be reclassified.

The BLP model (if implemented securely), no information leakage is possible:

• No read-up and no write-down prevent subjects from simultaneously having read access to information at one level
and write access to information at a lower level.

However, this also prevents legitimate communication from high-level subjects to lower-level ones. Possible solutions include

• Temporarily downgrade the subject’s security level.

• Identify a set of trusted subjects that may violate the *-property.

8.5.3 Other models

8.5.3.1 Integrity models

Analogy with water, where water can have different qualities which is influenced by many factors. In the computing world,
programs process data from multiple sources, and integrity model try to answer what the integrity of the result is.

The simplest such model is the low watermark model, where an objects integrity is the lowest integrity level of all objects it
interacts with. However, this is too simplistic, as everything gets contaminated.

44

8.5.3.2 Biba integrity model

This model is dual to BLP in the sense that information may only flow from high-integrity regions to low-integrity regions.

• Write-down: The writer’s label must dominate the object’s.

• Read-up: The object’s label must dominate the reader’s.

This is reasonable, as a manager can overwrite subordinate’s data, but untrusted software may not taint data or other
programs. The integrity is preserved.

However, what if we want both confidentiality and integrity?

• Only read and write at the same classification.

• Use BLP for classifying some data, Biba for others.

• Allow read-down and combine Biba with other mechanisms.

8.5.3.3 Chinese wall model

The Chinese wall model is a confidentiality model to avoid conflict of interest situations. Each object is associated with a
company and the set of companies is partitioned into conflict of interest classes (e.g. a class for banks, etc.).

A subject may access a company’s objects if and only if he has not previously accessed data of a different company in the
same conflict of interest class, i.e., he is on the right side of the wall. This implies that access rights may change with each
access.

8.6 Limitations of access control models

While access models restrict operations like read and write, information may still be revealed in various other ways. Examples
of such information leaks are

• Error messages to the user (e.g. ”file not found“)

• Timing behavior based on CPU usage (send a 0-bit with 100% of CPU, and a 1-bit via sleep)

• Locking and unlocking files

• Encode information in the invoice sent for services rendered

8.6.1 Interface models

An alternative to this are interface models, where not operations are restricted, but rather restrictions on the systems’
input/output.

Interface models specify a system (security) model with an interface that provides functions from inputs to outputs. Non-
inference specifies a security property: A group of subjects using a set of commands is non-interfering with another group
of subjects if whatever the first group does has no effect on what the second group can observe.

The idea is that ”low“ output should not ”depend“ on ”high“ inputs. This can be formalized by associating security levels
with subjects s and inputs to (deterministic) functions fs. If s has level l, then the result of fs may only depend on inputs
dominated by l.

A possible formalization based on Goguen and Meseguer is the following. Let out(u, I) be the system’s (deterministic) output
function, whose value is the output to user u generated by the input history I = i1. · · · .in. Let purge(u, I) purge from I all
inputs ij where the clearance of the user who input ij dominates u’s clearance.

In this setting, a system is non-interfering if its output to low-level users is independent from input from high-level users.
Namely, for all input histories I and users u:

out(u, I) = out(u,purge(u, I))

8.6.1.1 Issues with non-inference

• What are appropriate formalizations for realistic systems?

• Non-inference appears very strong. A secret password will influence the system output, e.g. the login succeeds or fails.

45

8.7 Monitor-based enforceability

Most standard enforcement mechanisms are based on execution monitoring, which is a very general idea and includes security
kernels, reference monitors, firewalls and most OS and hardware-based enforcement mechanisms. A central question is what
types of policies are actually enforceable this way?

Let Ψ denote the universe of all possible sequences, either finite or infinite. Executions are represented at some abstraction
level, where sequences of actions, program states, state/action pairs, etc. are used. A security policy P is specified as a
predicate on sets of executions, i.e. characterizes a subset of P(Ψ).

A system S defines a set ΣS ⊆ Ψ of actual executions and satisfies P if and only if P (ΣS) is true. This definition is again
very general and includes e.g. non-inference.

Execution monitoring (EM) works by monitoring the target execution. So any enforceable policy P must be specified as

P (Π) ⇐⇒ ∀σ ∈ Π : P̂ (σ)

P̂ formalizes the criterion used by the EM to decide whether a trace σ is acceptable, i.e. whether or not to abort.

For a policy P exists a EM enforcement mechanism, if P is a safety property. A policy P is such a safety property, if three
requirements are fulfilled.

1. P must be a property formalizable in terms of a computable predicate P̂ on executions. A set is a property if and
only if set membership is determined by each element alone, and not by other members of the set.

Note that not all security policies are properties, e.g. non-inference is not a property. This is because a system is
non-inferring, if for all input histories I and user u, out(u, I) = out(u,purge(u, I)).

2. Prefix closure: If a trace is not in P̂ , then the same holds for all extensions. Or conversely, if a trace is in P̂ , so are
all prefixes.

This is necessary as mechanisms cannot decide based on possible future executions.

3. Finite refutability: If a trace is not in P̂ , we must detect this based on some finite prefix.

Safety properties are a class of temporal properties, essentially stating that noting bas ever happens. Invariants are an
important special case of safety properties.

EM mechanisms can be implemented by security automata (another important security model).

46

9 Privacy

9.1 Definitions

• Confidentiality: no unauthorized access to information.

• Anonymity: identities of communicating agents are secret.

• Confidentiality: collected data only used for limited, pre-defined purposes.

Privacy includes both anonymity and data protection.

9.1.1 Anonymity

You are only anonymous within a group if your actions cannot be distinguished from the actions of others in the group. This
group is called the anonymity set, and should be as large as possible: You cannot have anonymity by yourself.

Anonymity has several use cases:

• Socially sensitive communication, e.g. disease or crime victim chat rooms.

• Law enforcement: anonymous tips or crime reporting.

• Corporations: hiding collaborations with divisions or partners.

• Political dissidents: criticizing their governments.

• Governments: e.g. for politically sensitive negotiations, whistle-blowing, etc.

• Criminal activities.

Pseudonyms are a lightweight mechanism to achieve unobservability/anonymity, i.e. provide confidentiality for the principals’
identities. In some cases, it is possible to link to the actual identity.

There are various possibilities to achieve anonymity:

• Multicast, radio transmission, ring network: The addressee must be identified by an attribute that is visible to him
while invisible to others. For instance, the attribute could be encrypted with the public key of the addressee, and every
recipient of the multicast decrypts all messages.

Obvious drawbacks are scalability, denial of service, etc.

• Proxies: Instead of direct communication with a server, the user talks to a proxy which then talks to the server. This
approach has two major weaknesses:

– The proxy knows everything.

– Traffic analysis is possible.

A possible solution to this is a cascaded proxy chain.

• Cascaded proxies with encryption: The client encrypts its message and the destination address with the key of
the proxy, which decrypts and makes the request. Again, this can be generalized to cascaded chains of proxies. In this
case, each proxy only knows the previous and next hop, and all stages are encrypted.

Now, one uncompromised proxy is enough to still ensure anonymity. However, traffic analysis is still possible. This
can be solved by mix networks.

47

9.1.2 Mix networks

A mix network builds an anonymous channel and is designed to work in an environment with an active attacker who can:

• Learn the origin, destination(s), and representation of all messages in the communication system.

• Inject, remove or modify messages.

• However, it is not possible to determine anything about the correspondences between a set of encrypted items and the
corresponding set of unencrypted items, or create forgeries.

To send a message M to an agent at address A, one sends

{R1, {R0,M} , A}K1

to the mix, where Ri is a random string and K1 the mix’s public key. The mix then forwards {R0,M} to A. So far, this is
just a variant of a single proxy using randomized encryption. However, the mix also performs additional operations to foil
traffic analysis.

• Agents/mixes work with uniformly sized items. Messages are split or padded into fixed-sized blocks.

• The order of arrival is hidden by outputting items in batches. Either a fixed ordering (e.g. lexicographic) or random
ordering can be used.

• Repeated information must be blocked, i.e. mixes filter duplicates, cross-checking across batches.

• Sufficient traffic from a large anonymity set is required. Solution involves clients regularly sending/receiving dummy
messages. This overhead is only sensible against a global observer who can measure traffic at both endpoints.

As a single proxy, a single mix has the weakness, that if compromised, the attacker knows everything. This can be lessened
by forming mix networks, each mix in a different ”administrative domain“.

9.1.2.1 Receipts

If desired, a mix can return a receipt Y for each message received

Y = {C, {R1, {R0,M}KA
, A}K1}K−1

1

for C a large, known constant. A participant can later prove that he sent a message by supplying

• X = {R0,M}KA
, A.

• The retained string R1.

9.1.2.2 Untraceable return address

To reply to an anonymous sender x with return address M in the case of a single mix with key K1:

• The sender includes the ”return address“: {R1, Ax}K1
,Kx

– R1 is a random string that can also be used as a shared key.

– Kx is a fresh public key, created for this purpose..

– Ax is x’s actual address.

• Receiver sends a reply to the mix: {R1, Ax}K1
, {R0,M}Kx

.

• The mix transforms this to {{R0,M}Kx
}R1

and sends it to Ax.

– The encryption with R1 is used to mask the input/output correlation.

48

9.1.2.3 Summary of mix networks

• Very high degree of anonymity

– No correlation between mix input and output.

– Only some nonzero fraction of the mixes need to be honest.

– With enough dummy traffic, the anonymity set is the entire network.

• Drawbacks

– Network delays.

– Multiple encryption.

– Network overhead, though in networks with substantial traffic, dummy messages can be reduced or even eliminated.

9.1.3 Crowds

Crowds are developed to achieve anonymous surfing by randomization. No cryptography is used, which reduces the overhead
and eliminates the key distribution problem. Crowds are peer-oriented, where each client (sender) also acts as server
(receiver), and messages are sent on random paths, through other senders. This ensures anonymity of the sender and the
communication relationship, however, there is no server anonymity, but this is often unimportant.

Each user has an associated anonymizing process, called a jondo, which acts as both a client for the user and as server
for other jondos. The user can join or leave the crowds by registering with a server (called a blender). To send a (http)
request (for a user or another jondo), a biased coin is flipped, and depending on the result, the request is either sent to the
web-server, or to a randomly chosen jondo in the crowd. This process is repeated until the server is reached. Each jondo
also records information needed to return replies.

49

	I Ueli Maurer
	Introduction and motivation
	Basic definitions
	Terminology
	Basic security objectives
	Classification of security measures

	Digital objects
	The effect of digital objects in the real world
	Distinguishing good and bad digital objects
	Some basic problems of the information economy

	Three dilemmas
	Defining security
	Two approaches to defining security
	Modularity and composability
	The constructive approach

	High-level classification of security problems
	Unilateral security
	Multilateral security

	Cryptography - basic concepts
	Defining security of cryptographic systems and functions
	Keyless cryptographic functions
	One-way functions
	Collision-resistant hash functions

	Randomness and pseudo-randomness
	Distinguishers
	Pseudo-randomness

	Secrecy, authenticity, and their abstraction
	Describing channels
	Secrecy and authenticity
	Availability
	A symbolism for channels and keys
	Timing aspects
	Trivial security transformation
	Key-transport security transformations

	Symmetric cryptosystems
	Concept and definition
	Types of symmetric cryptosystems
	Does encryption provide authenticity?
	Interpretation as security transformations

	Message authentication codes (MAC)
	Concept and definition
	Limitations of MACs

	Combining encryption and message authentication
	Public-key cryptography
	Concept and definition
	Interpretation as a security transformation
	Secret-key establishment using public-key encryption
	The Diffie-Hellman key-agreement protocol
	The RSA public/key cryptosystem

	Digital signatures
	Concept and definition
	Interpretation as security transformation

	Security in distributed systems and the role of trust
	The security bootstrapping problem
	Security bootstrapping
	Creating 's
	Naming entities, pseudonyms and entity invariance

	Limitations of cryptographic security transformations
	Trust-free security transformations
	Security bootstrapping without trust assumptions
	The quadratic blow-up problem

	Trust-based security transformations
	Roles of trusted entities
	Connection channels
	Key distribution

	Necessary and sufficient conditions for establishing secure channels or secret keys

	Key management, certificates, and PKIs
	Key management
	Protocols based on shared secret keys with trusted authority
	Star-shaped security set-up
	Trusted party relays messages
	Trusted party distributes session keys

	Public key certificates
	Certificates, the concept
	The semantics of certificates
	Interpretation of certificates in the -calculus
	Using certificates
	Certificate chains

	A logical calculus for certificates and trust
	Introduction and notation
	Inferring the authenticity of a public key
	Recommendations
	Inferring trust

	Certification structures
	The certification graph
	Hierarchical certification
	Cross-certification
	Unstructured certification
	Retrieving certificates

	Public-key infrastructures (PKI)
	Concept
	Problems
	The naming problem
	Expiration and revocation
	PKI key recovery
	PKI trust models

	II David Basin
	Introduction
	What is information security?
	General definitions
	Security as policy compliance
	Examples of security properties
	Properties, policies and mechanisms
	Secure coprocessor as an example

	Security as risk minimization

	Networks
	Introduction
	Application-managed security
	Advantages
	Problems

	Network-managed security
	Implementing lower-layer/midbox security

	Protecting the network
	Firewalls
	Example: securing a web server
	Insider attacks
	Intrusion detection systems

	Security protocols
	Basic notations
	Security protocols
	The attacker
	Protocol objectives

	Problems and principles
	Examples of kinds of attack
	Principles for designing cryptographic protocols

	Formal methods
	Modeling protocols as a trace set

	Protocols example
	Kerberos
	Protocol overview
	Kerberos architecture
	Detailed view how the protocol operates
	Scalability of Kerberos
	Limitations of Kerberos IV

	SSL/TLS
	SSL handshake
	Solutions to phishing

	IPSec
	Protocol modes
	Headers
	Security policy database
	Aside: Perfect forward secrecy

	Conclusions

	Access control
	Basic concepts
	AAA
	Policies and models

	Access control matrix model
	Access matrix data structures
	Access-control lists (ACL)
	Capability lists

	Role-based access control (RBAC)
	Advantages and disadvantages

	Discretionary access control (DAC)
	Mandatory access control
	Lattice
	Bella-LaPadula (BLP) model
	Other models
	Integrity models
	Biba integrity model
	Chinese wall model

	Limitations of access control models
	Interface models
	Issues with non-inference

	Monitor-based enforceability

	Privacy
	Definitions
	Anonymity
	Mix networks
	Receipts
	Untraceable return address
	Summary of mix networks

	Crowds

