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1 Java concepts 

1.1 Access modifiers 
In Java, there are various access modifiers which allow you to control who can access an attribute: 

- (default): accessible in the current package  

- public: accessible from everywhere 

- private: accessible only from this class 

- protected: accessible in the current package and all subclasses, regardless of their package 

1.2 Interfaces, abstract classes and inheritance 
In Java you have multiple ways to reuse your code: 

1. Interfaces: With interfaces you have the possibility to define the skeleton of a class with method 

signatures and constant declarations, but nothing more. Your class may implement as many in-

terfaces as you wish. 

2. Concrete class with inheritance: You may inherit from at most one superclass, but now can re-

use the method implementations (not just the declarations) of this class. 

3. Abstract classes: An abstract class is like an ordinary class, which cannot be instantiated. Addi-

tionally, you do not need to provide an implementation for all methods, but can only give a 

method signature and therefore forcing your clients to implement such a method. 

1.3 Exceptions 

1.3.1 Introduction 

Whenever an exceptional event occurs, we can throw an exception: throw(new Exception()). This excep-

tion then gets passed through the call stack, looking for an appropriate hander. To catch an exception 

and do some useful error handling, Java provides a catch clause: catch(ExceptionType name). Any excep-

tion that is of type ExceptionType or a descendent thereof will be caught and can be handled. 

1.3.2 Exception types 

There are two types of exceptions: 

1. Checked exceptions: Exceptions a program wants to recover from, like bad user input (e.g. non-

existing file). This kind of exceptions must be handled by the program. 

2. Unchecked exceptions 

a. Errors: Exceptions of this type are beyond the program’s control, like hard disk errors. 

b. Runtime exceptions: Violations of the program logic, essentially bugs, like null pointer 

access. The program could handle them, but it’s better to fix the bug. 

Often it is necessary to clean up at the end of a try-Block, regardless whether an exception was thrown. 

This is when finally comes in handy: It will always be executed at the end of the try-statement, even if an 

exception is thrown. 
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1.3.3 Exception handling and control flow 

The control flow of a try-statement works as follows: 

- The code in the try-statement is executed. If everything goes 

as expected, we directly proceed with the last step. Other-

wise we throw an exception of a certain type and leave this 

block immediately. 

- The catch clauses are inspected from first to last. The first 

that matches our exception type (that is the two types 

match directly), or the thrown exception is a subtype of the 

caught exception. If no catch clause matches, we proceed with the next step but will pass the 

exception on the caller of the current method. 

- At the end, the finally block is executed. 

As an important consequence of the way the catch clauses are processed, theses clauses should always 

be ordered from most specific to most general, otherwise an exception may be handled by a clause that 

works, but is not ideal. 

1.3.4 Nested exceptions 

In the catch and finally clauses it is possible to throw exceptions, too. Java specifies that always the last 

unhandled exception thrown in a try block will be the one passed on. For instance, suppose a try block 

that throws an exception A that can be handled in a catch block. In that catch block, a second exception 

B is raised. The control flow gets passed to the finally statement, where yet another exception C is 

thrown. Now, exception A is handled, B gets discarded and exception C will be passed to the caller for 

handling. 

1.3.5 Announcing exceptions 

To ensure that every checked exception has a matching handler, every method that can throw an excep-

tion must announce this behavior. 

  

try { 

 // code 

} catch (Type1 e) { 

 // handle exception 

} catch (Type2 e) { 

 // handle exception 

} finally { 

 // finally block 

} 

void someMethodWithAVeryLongNameToFillUnusedSpace() throws ExceptionType { /**/ } 
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2 Basic problems and concepts in parallel systems 

2.1 Race conditions and stale values 
A race condition is a flaw in a system whereby the output/result of an operation is unexpectedly and 

critically dependant on the sequence or timing of other events [definition loosely taken from Wikipedia]. For 

instance if two threads execute x = x+1, we have no way to know what will happen. It is even possible 

that for a very long time, nothing bad happens, and suddenly after a totally unrelated change in the 

software, updates to x are missed. Additionally, the compiler and various other things may influence the 

probability that a race occurs. 

To prevent such behavior and force certain blocks of code to be executed atomically, we need synchro-

nization. 

2.2 Synchronization with locks 
In Java, every object can serve as a lock, which is known as intrinsic locks. With locks we can enforce 

synchronization: The lock is acquired before a critical section and released afterward. Such a critical 

section will be executed mutually exclusive: only one thread at a time can be in a critical section guarded 

by the same lock. 

In Java, locks are reentrant. That means, 

if a lock is acquired that is already held, 

the operations succeeds. This is neces-

sary when overwriting methods where 

the overwritten method is called. 

Java also provides a very easy way to use 

the intrinsic locks of any object: synchro-

nized. Any object then can serve as a 

lock. If a whole method body needs to be 

guarded with “this” as lock, then the whole method can be made synchronized as a shorthand notation. 

2.3 Visibility 
A consistent view of all data is only guaranteed after synchronization. Additionally, for fields it is possi-

ble to ensure visibility with the volatile keyword. This makes all updates visible globally; note that it does 

not guarantee atomicity, though. There even is no guarantee about the time when we see the changes, 

but once we see them, all prior changes to any variables will be visible as well. 

2.4 Condition queue 
In a parallel system it may be necessary to wait for a certain condi-

tion to become true. Instead of using a busy loop, which unneces-

sarily consumes resources, sleep may be used. But this approach brings some problems along: 

- There is not enough control on how long a thread sleeps. It is possible to provide an upper 

bound to the sleeping time, but there is no guarantee, and a thread can even be interrupted 

earlier. 

// synchronize just parts of a method with 

// any object as lock 

void someMethod() {  

 /* normal code */ 

 synchronized (lock) {/* protected code */} 

 /* normal code */ 

} 

 

// synchronize whole method body with “this” 

void synchronized someMethod() { /**/ } 

Thread.sleep(upperBound) 
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- If we want to wait for a certain condition to be met, we have no way to know for how long we 

have to wait. 

- If we want to wait in a synchronized block, this can be difficult: If we don’t release the lock be-

fore going to sleep, no other thread can make any progress and our condition will probably nev-

er change. 

These problems are solved with a condition queue. Like every object can serve as a lock, every object 

can serve as a condition queue. The interface of such queues looks as follows: 

- wait(): release the currently hold lock and suspend the current thread 

- notifyAll(): inform all waiting threads that the object state has changed. As soon as the current 

thread has released the lock, one thread will wake up and reacquire the lock. If no thread is 

waiting, a noop is performed :) 

Intrinsic queues are tightly coupled to intrinsic locks. It is only possible to call these queue methods if 

the lock is held. This makes sense, since it doesn’t make any sense to wait for a condition to be met, if 

we cannot examine the object state (because we do not hold the lock). Equally one should only notify 

other threads if a change has been made, which is only possible, if the thread holds the lock. 

2.5 Semaphore 
A semaphore is an integer-valued object with two main operations: 

- p(S): acquire. If S is greater than zero, decrement S by one or suspend the current thread 

- v(S): release resource. If there are suspended threads, wake one of them up or else increment S 

by one. 

Both these operations are atomic. The value of S can be initialized at the beginning and after that, the 

semaphore always fulfills the following invariants: 

1. S ≥ 0 

2. S = S0 + #V(S) - #P(S) 

With semaphores it is very easy to get a working solution to the 

mutex problem, even for more than two threads; no deadlock, 

no starvation. 

The fairness models do also apply to semaphores, and in java one can specify the fairness of the sema-

phore: 

- Blocked-set semaphore: One (randomly picked) thread will be woken up. 

- Blocked-queue semaphore: The suspended threads are kept in a FIFO-queue, and will be woken 

up in the order of suspension. 

- Busy-wait semaphore: Value of S is tested in a busy wait-loop. Note that now only the if-

statement is executed atomically, but multiple threads may execute their if-statement in inter-

leaved manner. This version has several flaws, including the possibility of starvation. 

 

while (true) { 

 // non-critical section 

 p(S); 

 //critical section 

 v(S); 

} 
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2.6 Semaphores vs. monitor locks 
Both concepts can be used to implement each other; they are in some sense equivalent. However, the 

use of synchronized methods to implement is significantly easier than the other way round. 

 

To implement monitors based on semaphores, a little more thought is necessary: To control access to 

critical section, every lock needs a semaphore S. All synchronized blocks are then framed with S.p() at 

the beginning, and S.v() at the end. Another semaphore SCond is used to queue threads that released 

their lock because a condition is not met (wait()), and we must explicitly maintain a counter C_S to find 

out how many threads are waiting for a lock and then evaluating some condition (the threads sleeping 

after wait()). The methods wait and notifyAll are then translated into the code to the right. 

Note that a call to notifyAll does also release the lock, so this method can only be called at the end of a 

synchronized block. In the code for wait() one may be tempted to acquire the lock by calling S.p() 

(crossed out in red), but that does not work! If the lock is released, another thread than the currently 

woken up thread will acquire the lock. Therefore the lock is directly transferred to the woken up thread, 

and this thread can directly proceed. 

Important: Please note that this implementation presented in the lecture is complete and utter non-sense. A 

thread awakened with notifyAll does not have any privileges whatsoever and has to compete in the usual 

manner with any other threads that might be actively competing to synchronize on this object. Furthermore 

the given implementation is in no way equivalent to real Java locks.  

2.7 Thread management 

2.7.1 Thread states 

A thread is at all times in one of the following states: 

- NEW: The constructor has been finished, but no one called start() yet. 

- RUNNABLE: Running or available to run. 

- TERMINATED: Execution has been completed, either by normal exit or an uncaught exception. 

- BLOCKED: This thread is waiting for a monitor lock. 

- WAITING: The thread waits for a condition in an intrinsic queue. 

- TIMED_WAITING: The thread has decided to sleep for a certain amount of time. This can hap-

pen when sleep() or join() is called. 

class Semaphore { 

 int s = 0; 

 public Semaphore(int s0) { s = s0;} 

 

 public synchronized void p() { 

  while (s == 0) wait(); 

  s--; 

 } 

 

 public synchronized void v() { 

  s++; 

  notifiyAll(); 

 } 

} 

/* wait() is translated into */ 

C_S++; 

S.v(); // release the lock 

SCond.p(); 

S.p(); 

C_S--; 

 

/* notifyAll() looks like */ 

if (C_S > 0) SCond.v(); 

else S.v(); 
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3 Reasoning about parallel programs 

3.1 Correctness 
To reason about the correctness of a parallel program, we use two kinds of properties: 

- Safety properties: These properties must always be true. For instance, mutual exclusion is such 

a property. A better definition may be: Something bad never happens; that is, that the program 

never enters an unacceptable state. 

- Liveness properties: This kind of properties must eventually be true, but they make no state-

ment about how long it will remain true. It may either now or at some future time be true. A 

better definition may be:  Something good eventually does happen; that is, that the program 

eventually enters a desirable state. 

Often the term thread-safety is used when talking about correctness in parallel systems: A thread-safe 

object ensures that the state of that object is always valid when being observed by other objects and 

classes, even when used concurrently by multiple threads. 

3.2 Deadlock and Starvation 
For a parallel system to be useful, some properties, or rather the absence of these, are very important. 

These properties especially are important for a mutex solution: 

1. Deadlock: If no thread is able to make progress, we speak of deadlock. The absence of deadlock 

is clearly a safety property, but it does not imply that the thread actually makes progress. It just 

states, that the thread is not frozen. It very well be possible that only other threads make pro-

gress. 

2. Starvation: If a thread wants to enter its critical section, eventually it will succeed. Note that the 

absence of starvation implies the absence of deadlock. In practice however, the absence of star-

vation is not always needed. In particular, if starvation is merely a theoretical issue, an algorithm 

that gives no guarantee about starvation may be used. 

a. Livelock: The livelock is a special case of starvation. The states of the processes involved 

in the livelock constantly change with regard to one another, none progressing. 

3. Undue delays: If there is no contention, a thread that wishes to enter its critical section will suc-

ceed. The overhead should be small in the absence of contention. 

3.3 Fairness 
If multiple threads attempt to perform an action (e.g. acquiring a lock), different models of fairness may 

apply. If n threads compete for the same resource, we speak of contention. The fairness model now tells 

us who will be served first if there is contention: 

- Weak fairness: If a thread continuously makes a request, eventually the request is granted. 

- Strong fairness: If a thread makes a request infinitely often, eventually the request is granted. 

To see the difference between weak and strong fairness, you may consider the following setup: 
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Threads A and B both want to access some resource, and they indicate this by setting a flag to 1 (the line 

in the picture above represents the value of this flag). With a weak fairness model, thread A is not guar-

anteed to be served. If you imagine a service provider checks at every vertical line, it may not “see” the 

request of the thread. 

There are even more fairness models: 

- Linear waiting: If a thread makes a request, the request is granted before any other thread is 

granted the request more than once. 

- FIFO waiting: If a thread makes a request, the request is granted before a later request by an-

other thread is granted. 
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4 Solutions to the mutual exclusion problem (critical section) 

4.1 Ping pong, first attempt 
There is a shared volatile variable turn that indicates, who can 

go into its critical section. Both threads get an ID, and if they 

want to enter their critical section, they wait as long as turn is 

not equal to their ID. Then, after they have executed their criti-

cal section, the thread changes turn so that the other thread 

can go on. 

This attempt satisfies the mutual exclusion property, and there is no starvation (and therefore no dead-

lock). However, in the absence of contention, this attempt may fail. 

4.2 Second attempt 
The same idea is used, but now both threads do have an 

own volatile variable: request0 and request1. request  set 

to 1 indicates that this thread does not want to enter its 

critical section. The enter protocol works as follows: 

- As long as the other thread wants to enter the crit-

ical section, we wait. 

- Then we tell the world we want to be in the critical 

section by clearing our request flag. 

- After executing we reset our flag to 1. 

This attempt does not even provide mutual exclusion, because the request flag is set too late. This di-

rectly leads to attempt three. 

4.3 Third attempt 
Same approach as above, but the flag request is set to 0 before the second while loop. Mutual exclusion 

is now guaranteed, but deadlock is possible. 

4.4 Fourth attempt 
The third attempt is extended further: In the inner while loop, when we see that the other thread wants 

to enter its critical section, we back off by setting our flag to 1, and right away again to 0. This way, no 

deadlock can occur, but a thread may starve. Fixing this last issue leads to Dekker’s solution, the first 

known solution to the mutual exclusion problem in concurrent programming. 

  

while (true) { 

 // non-critical section 

 while (turn != myID); 

 //critical section 

 turn = 1 - turn; 

} 

// code for thread with ID 0 

while (true) { 

 // non-critical section 

 while (true)  

  if (request1 == 1) 

   break; 

 request0 = 0; 

 //critical section 

 request0 = 1; 

} 
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4.5 Dekker’s solution 
Dekker’s solution combines the fourth attempt with attempt number 1, ping pong. 

  

nextid = 1 – myid; 

while (true) { 

 mysignal.request(); 

 while (true) { 

  if (othersignal.read() == 1) break; 

  if (mysignal.getWinner() == nextid) { 

   mysignal.free(); 

   while (true) { 

    if (mysignal.getWinner() == myid) 

    break; 

   } // other thread won 1st round 

   mysignal.request(); 

  } 

  // critical section 

  mysignal.free(); 

  mysignal.setWinner(nextid); 

 } // end loop 

} 
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5 CSP 
CSP, communicating sequential processes is a model for synchronous communication with global chan-

nels. These global channels are the only state that is shared between threads and are used to transmit 

data. Because communication happens synchronously and without buffering, synchronization is implied. 

That means, in the CSP world, there is no need for locks or semaphores. 

The fact that reading a channel blocks if no data is available, guarded commands may be useful. Multi-

ple guards with associated commands can form a select clause with the following properties: 

- If only one guard evaluates to true, the corresponding block 

is executed. 

- If multiple guards evaluate to true, one of the associated 

blocks is chosen randomly. 

- It may be necessary to wait if no guard evaluates to true, but 

if all guards evaluate to false (e.g. channel closed), the command fails. 

5.1 Buffering in CSP 
If buffering is needed in CSP, one has to imple-

ment its own buffer, because hidden buffering 

may be dangerous. The problem of hidden buff-

ers is that they are bounded and the clients may 

not know enough about the size of these buff-

ers. If they make wrong assumptions, the pro-

gram may work on one system, but fail on an-

other (with a different buffer size). Consider the 

code example to the right. Imagine a hidden 

buffer of size 128. Everything works, but if the 

buffer offers only space for 64 items, the producer will not be able to send count over channel 2. 

Note: In my opinion this is not really a problem of hidden buffering but of this particular code: Sending 

the number of items this way is always wrong! It does not work at all without buffering, and even with 

buffering, it only works if the buffer is bigger than the total number of items. So either buffer the items 

locally in the producer, or use a second channel to signal that there is no more input (used with guards / 

select). But this is an example that you need to be careful when working with (hidden) buffers. 

  

// abstract select clause 

select { 

 guard1 -> command1; 

 guard2 -> command2; 

} 

// producer 

while (count < 100) { 

 put(ch1, b[count++]); 

} 

put(ch2, count); 

 

// consumer 

get(ch2, count); 

while (j < count) { 

 get(ch1, b[j++]); 

} 
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5.2 JCSP 
In Java JCSP can be used for CSP style communica-

tion through channels. The units of computation 

are of type CSProcess, an interface of JCSP. The 

only thing in that interface is a public method run. 

The communication happens through different 

kinds of channels: 

- One2OneChannel and One2AnyChannel 

-  Any2OneChannel and Any2AnyChannel 

Each channel has two “ends”, ChannelOutput and 

ChannelInput. A program can write to the first 

type of end, while reading from the ChannelInput. 

Starting the processes works with class Parallel 

that expects an array of processes as parameter. 

The method run then starts all the threads. 

Choosing between input channels works with 

guards, as one would except from a CSP library: 

Any input channel can serve as guard, one just 

need to change its type to AltingChannelInput. As 

shown to the right, the Alternative class makes it 

possible to have a select clause, through the use of switch. There is also a special input channel skip that 

is always ready. To change the behavior of the select, one may use different select methods: 

- select: works as introduced in CSP, that is, picking a channel at random. 

- priSelect: priority select; the order matters. 

- fairSelect: provides fairness, meaning that no channel is selected a second time before all other 

channels that are ready have been read at least once. 

5.3 Examples of CSP 

5.3.1 Finite impulse response filter 

For a given stream of data, the computation of a 

finite impulse response filter may be done using the 

CSP model for communication. Each thread is re-

sponsible for the calculation with one weight and the 

data stream elements are then passed through the 

chain of threads. 

  

// a process 

class MyWorker implements CSProcess {} 

 

// a channel 

One2OneChannel chan = Channel.one2one(); 

 

// reading and writing 

ChannelInput in = chan.in(); 

ChannelOutput out = chan.out(); 

out.write(val); 

val = in.read(); 

 

// starting processes 

new Parallel 

( 

 new CSProcess[] { 

  new MyWorker(), 

  new MyWorker() 

 } 

).run(); 

 

// choosing between input channels 

AltingChannelInput in, request; 

Guard[] guards = {in, request, skip}; 

Alternative alt = new Alternative(guards); 

switch (alt.select()) { 

 case 0: .. break; 

 case 1: .. break; 

 case 2: .. break; 

} 
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6 Problem decomposition 
When given a problem that should be solved using a parallel system, one has to think about how to de-

compose the problem. Two principal approaches exist: 

- Data partitioning: Focus on data, each thread works on a subset of the data, often with identical 

instructions. 

- Computation / task partitioning: Focus on computation, each thread gets a different task. 

There is no general way to tell what is better. The decomposition depends heavily on the problem itself, 

but also the parallel system influences what is best. 

6.1 Data partitioning 
Data partitioning is rarely possible without communication, in general threads may need access to some 

shared date and/or produce data for other threads. 

The major issues one needs to deal with concern identifying a good partitioning (all threads should take 

about the same amount of time) and handle the communication 

6.2 Task partitioning 
There are a number of possible structures on how to partition the computation: 

- Independent computations: There are a number of completely different, independent tasks 

that can be carried out by different threads. 

- Pipelining: Each thread performs one 

stage of the computation, for example 

some filter computation (see image). 

- Task queue: Various activities, usually of different execution time, are assigned to threads. 

 

 

 

Parallel solution is easy to find Difficultly to parallelize or impossible 

Large data sets Small data sets 

No dependences (e.g. dense matrices) Many (non-obvious or value-based) dependences 
(e.g. sparse matrices) 

Computation time can be easily estimated and is a 
function of the size of input data. 

Computation time difficult to estimate and/or 
dependant on the value of the input data. 
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7 Fork-Join model and OpenMP 
In the fork-join programming model, one thread is called the master thread. At the begin of the pro-

gram, only this master thread is active and executes all sequential parts of the program. Whenever a 

task can be executed in parallel, the master thread forks, that is creates or awakens, additional threads. 

At join, the end of parallel sections, these extra threads are suspended or die. 

This model is a special case of the general thread model, where at the begin only the main thread is 

active, which can spawn additional threads if needed. The general model however is much more flexible 

and has better support for task parallelism. On the other hand the fork/join model is more structured 

and therefore may be easier to optimize. 

7.1 OpenMP 
OpenMP is an industry standard based on the fork/join model. The user can mark the parallel section 

and add proper synchronization. The system then handles all the nasty details of the parallelism. 

7.1.1 Parallel section 

omp parallel starts a parallel region. In this region, the number of threads remains constant, unless the 

user explicitly changes it. If not stated otherwise, code in parallel regions is executed by all threads. 

7.1.2 Basic parallel for loop 

A for-loop with omp for in a parallel section (omp parallel for is also possible) is parallelized. The user has 

little control on how the loop iterations are mapped onto threads, and there are no constraints on order 

of execution. 

7.1.2.1 Restrictions on for loops 

Not all loops can be parallelized with OpenMP, there are certain restrictions: 

- Init-expression must be var = lower where lower is a loop invariant. 

- Simple increment, that is only constant increments or decrements are allowed. 

- Loop continuation test must be one of >,<,>=,<= 
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7.1.2.2 Private variables 

All variables are shared among all threads. If a variable should be local to each thread, this has to be 

specified with private(list). Private variables are undefined at the beginning and end of the loop, so no 

thread sees the previously defined value for its private variables, nor can he assign a new value to the 

shared variable. If this behavior is not desired, firstprivate and lastprivate may come in handy: The first 

tells the compiler to inherit the value of a private variable from the shared variable on loop entry, while 

the second assures that the value of the variable of the sequentially last loop iteration is assigned to the 

shared variable. 

7.1.3 single 

The single pragma is used inside parallel regions to specify that following block should only be executed 

by one thread. The execution may not be done by the master thread. 

7.1.4 Implicit barriers and nowait 

After a parallel for loop or a single clause, there is an implicit barrier. That is, no thread can proceed until 

all other threads have finished their job. This barrier can be 

eliminated by the nowait clause. 

7.1.5 Number of threads 

The number of threads is normally determined at startup, 

or the user selects a specific number of threads with 

OMP.setNumThreads(). 

7.1.6 Critical sections 

Critical sections are executed in a mutually exclusive man-

ner and can be marked with the critical pragma. 

7.1.7 Reductions 

OpenMP provides a reduction(operator:list) clause that eliminates the need to create private variables 

and dividing a computation (into accumulations of local answers that contribute to a global result) by 

hand. 

From the OpenMP specification:  

“The reduction clause specifies an operator and one or more list items. For each list item, a private copy 

is created in each implicit task, and is initialized appropriately for the operator. After the end of the re-

gion, the original list item is updated with the values of the private copies using the specified operator.” 

area = 0.0; 

//omp parallel private(tmp) 

{ 

 tmp = 0.0; 

 //omp for private (x) 

 for (i = 0; i < n; i++) { 

  x = (i + 0.5)/n; 

  tmp += 4.0/(1.0 + x*x); 

 } 

 //omp critical 

 area += tmp; 

} 

pi = area / n; 

area = 0.0; 

//omp parallel for private(x) reduction(+:area) 

for (i = 0; i < n; i++) { 

 x = (i + 0.5)/n; 

 area += 4.0/(1.0 + x*x); 

} 

pi = area / n; 
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7.1.8 Scheduling 

Scheduling controls how the iterations of a parallel loop are assigned to threads. The clause has the 

form schedule(type [,chunk]), where type is one of the following: 

- static: The threads are statically assigned chunks of size chunk. The default value for chunk is 

ceiling(N/p) where N is the number of iterations and p the number of threads. 

- dynamic: Threads are dynamically assigned chunks of size chunk, that is whenever a thread is 

ready to receive new work it is assigned the next pending chunk. Default value for chunk is 1. 

- guided: Similar to dynamic, but the size of chunk decreases and is approximately  

(#remaining iterations) / (2 (#threads)) 

- runtime: Indicates that the schedule type and chunk are specified by the jomp.schedule system 

property. Only useful when debugging. 

 

static Predictable and similar work per iteration 

dynamic Unpredictable, highly variable work per 
iteration 

guided Special case of dynamic to reduce sched-
uling overhead 

 

 

 

7.1.9 Task parallelism 

Task parallelism can be expressed with OpenMP through sections.  

  

//omp parallel sections 

{ 

 //omp section 

 phase1(); 

 //omp section 

 phase2(); 

} 
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8 Linearizability 
A linearizable object is one all of whose possible executions are linearizable. Often it is not possible to 

talk about a linearization point of an operation, but only of the linearization point of an operation for a 

specific execution. This makes reasoning about parallel programs hard. 

To make reasoning easier, method calls are split in two distinct events: 

- Method invocation. Notation: “Thread object.method(args)”, e.g. “A q.enq(x)” 

- Method response. Notation “Thread object: result”, e.g. “A q: void”, or “A q: empty()”. Note that 

the method is implicit. 

8.1 History 
A history H describes an execution; it is a sequence of invocations and responses. In such a history one 

may find method calls: An invocation and a response where both the thread name and object name 

agree. 

8.1.1 Projections 

For a history H there exist object projections, denoted H|obj. Such a history only contains invocations 

and responses of the object obj. Similarly with thread projections: H|thread is the history H without all 

invocations or responses that to not correspond to thread thread. 

8.1.2 Complete, sequential and well-formed histories 

A history is complete if there are no pending invocations (invocations without matching response). 

Complete(H) is the history H without all pending invocations. 

A history is called sequential is no method call is executed interleaved. 

A history is well-formed if the per-thread projections are sequential. 

8.1.3 Equivalent history 

Two histories are called equivalent, if the per-thread projections of 

both histories are equivalent; all threads see the same things in both 

histories.  

8.1.4 Precedence and linearizable histories 

A method call precedes another if the response event of the first method call precedes the invocation 

event of the second call. If two method calls do not precede each other, they are said to overlap. 

For two method calls m1 and m2 we say “m1  m2” if m1 precedes m2. The relation  is a partial order. 

If the history is sequential,  is a total order. 

A history H is linearizable if it can be extended to G by appending zero or more responses to pending 

invocations and discarding any other pending invocations, so that G is equivalent to a legal sequential 

history S where G is part of S. 
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9 Small topics 

9.1 Amdahl’s Law 
Amdahl’s Law is used to predict the theoretical maximum 

speedup using multiple processors when only a given part 

of the program can be parallelized. The speedup on n pro-

cessing units, where x percent of the computation are 

sequential, is given by the following formula: 

  
   

       
 

 

9.1.1 Efficiency 

Efficiency is a measurement of the processor utilization 

and is given by the speedup divided by the number of processors:   
 

 
 

9.1.2 Amdahl’s Law in practice 

In practice, Amdahl’s law is too optimistic, for various reasons: 

- The overhead produced by the parallelism increases with the number of processors. 

- In reality, the amount of work cannot be divided evenly among the processors. This creates 

waiting time for some processors, another form of overhead. 

9.2 Locking data vs. locking code 
Locks should be associated with data objects, and thus different data objects should have different 

locks. Suppose a lock is associated with a critical section of code instead of a data object: 

- Mutual exclusion can be lost if same object manipulated by two different functions. 

- Performance can be lost if two threads manipulate different objects attempt to execute the 

same function. 

9.3 MapReduce 
MapReduce is a parallel computing framework for a restricted parallel programming model. It is useful 

to distribute work to a farm / cluster of computing nodes. The user specifies what needs to be done for 

each data item (map) and how the results are combined (reduce). Libraries then can take care of every-

thing else, like parallelization, fault tolerance, data distribution, load balancing, etc. 

9.4 Why locking does not scale 
In practice, locking does not scale well for a number of reasons: 

- Not robust: If a thread holding the lock is delayed, no one else can make progress. 

- Relies on conventions: These conventions often only exist in the programmers mind. 

- Hard to use (conservative, deadlocks, lost wake-ups) 

- Not composable: It is hard to combine two lock-based objects (e.g. two queue: how to wait for 

either queue to be non-emtpy?) 


